## TE ET <br> 

## MAFHEMAT1GAL OOLLEGT1ON

The Editor: Mr. Arkady Alt.
Thanks to: Mr. Shaul Feder. Mr. Israel Zinger, Mrs. Tamara Ogen
for their valuable remarks
Translation and Printine: Mr. Maksim Alt
Art: used graphic works of
M. Escher, A. Fomenko, O. Fotechina

No. 1, NO V EMBER 1994, RAMAT-GAN

Copyctght By Mr. Alt Arkady "Blech" Hzgh Schoot, Ramat-Gan, Editorial Offtee "Delta", High School "HLich". Str. Hamea Veahad 10 . Ramat-Gan.

The Mathematical Collection "DELTA" is intended for the serious student who is interested in extending his knowledge of mathematical problems and techniques of solutions. It covers a very wide range of mathematical subjects and includes many novel and non-standard approaches.

I recommend it very strongly to the student who wishes to deepen his mathematical understanding, and in particular to those preparing for olympiads and other competitions.


Prof. Joseph Gillis
Weizmann Institute of Science,
Rehovot.

## COHTENTS

PREFACE ..... 3
DELTA AT THE SCHOOL ..... 4
Orthogonal Elemente in Triangle ..... 4
Problems from Graduate Exams. Solutions ..... 22
Delta S Problems ..... 34
DETTA S TABORATORY ..... 36
Round Arround Cubic Polynomial. ..... 36
Good Bounds ..... 41
FOR YOUNG PUPILS ..... 50
Problems ..... 50
RELAXATION CORNER ..... 51
Jokes ..... 51
Piotures ..... 52
DELJA B BCHOOL ..... 53
Variation on Inequality Theme ..... 53
DELTA B COMPETITION ..... 94
QUICK PROBLEMG ..... 95
MONETER PROBLEME ..... 96
oLYMPTADS ..... 97
31-th International Mathematical Competition ..... 97
ANSWERE. HINTE. GOLUTIONS ..... 99
DEITA'S ANNOUNCEMENT ..... 102
( Notes on the Marein ) ..... 40. ..... 49

## PREFACE

## Dear reader !

So, before you another attempt of apecial mathematical issue for pupils In Israel. In spite of unsuccessful experience of big number of predecescors we hope that this attempt won t fail. We decided to bring this enterprise to a logical end and the mathematical collection of articles of the one author call mathematical magazine for papils and publish it with not large number of circulation. Absence the word "magazine" on the title is not accidently. All unsuccessful attempts show that maybe just such shape of issue is not appropriate for Israel. We won t analyse the canses, however, the analys has done and taken account within publishing this issue. This first issue can beoome a first issue in the series "Delta" of mathematical issues for pupils who are interesting in mathematies. Suggested that following issues will be a continuation of preceding issues and despite of structure variety and contents they ll constantly contain some "obligate" departments such as "Delta"'s problems", "Delta"s competition", "Solutions". "Olympiads", "Delta" s school". Suepested to include the department on computer science. Supgested presence of department "Information" where can be carried out the reverse connection with the readers.

Our aim is to give a chance to the interested in mathematics and its applications hiehschool pupils to get a deeper knowledge, extend mathematical outlook, amplify technics for solution of unordinary and complicate problems, accustom to the research, creative work and to the process of cognition. Restriction such pupil by school program and text-book even very soort means to stop his development, because iust independent, overtime work over things what has been chosen by own desires (not by compulsion), a chance to choose a diwection and move on are able to create from an interest the men who's able to create. Of course, here's the greate role plays a teacher who is able to notice such pupil, doesn t miss him and direct him. Therefore, we hope that "mathematical collection" will be aseful for teachers too.

Despite we predict most propably objections and wishes to fom, contents, design and other attributes of similar issues, we open for critios and we hope the first step will be assess at its true value and on a miracle which could allow the "Mathematical collection" to live for who in the close future become (or not necome) an intellectual power of this state. Remark. (see "Delta" s announce" in "Information").


This magazine is not for fun reading which is accessible for who has special alloy of character, interest, diligence and abilities. It allows within a lot of time, pen in the hand and sheet of paper, to be immersed into the wonderful world of harmony and triumph of mind called mathematics.
You reader, no once you feel weak facing difficult problem or place. But don't despaje ! Think indefatigly, try again, look for ways out from deadlock, overcome the top and the light of an idea bright your mind up, and the flash of truth light the dark up and dispel the fog, and a brief instant of happyness reward you and arm you by faith to own power before the face of a new problem, new trial which you wish to yourself. And so, go ahead !

```
    In spite of this issue was intended for pupils, i.e. for schoot, the
department "Delta" at the school" suggested to be useful since its has
sufficiently special destination - throw light upon questions which are
Linked with base course of school mathematics, with complicate and delicate
places into its, wth preparation on graduate cxams on mathematics.
We suggest to carry it out by articles, solutions in detail of problems which
was offered on graduate exams or similarly by level. probleme. As in
the each issue it suggested to be a "Lelta"s problems" in which we are going
lo offer you unordincry problems grouped corresponding to contents of base
sohoot courses on mathematics for s,10,11,12 forme. Solutions of problems os
the current issue rumber will be shown in the next issue.
```


# ORTHOGONAL ELEMENTS M TRANGE 

We shajl start from simple and most probably well-known facts.
Theorem 1. The midperpendiculars or perpendiculars drawn to the midpoints of triangle's sides intersect at one point which is also a centre of the circle circumscribed about triangle.

Theorem $e$. The altitudes in triangle intersect at one point which is to be said orthocentre of triangle.
Note $i$. If triangle $A B C$ is obtuse then the altitudes and midperpendiculars intersect outside of triangle.

So, we have following objects:

1. Midperpendiculars, points of their intersection which is a centre of the circle, triangle derived by mutually connection midpoints of triangle and naturally call by midtriangle (see fig.1).
2. The altitudes $h_{a}, h_{b}, h_{c}$ dropped to sides $a, b, o$ respectively, the point
of their intersection is the orthocentre, triangle derived by mutually connection of altitude's bases is the orthotriangle (see fig.2).

Before going on we remind you well-known fact of existence a point into triangle which is equalremoted from triangle's sides (the point of bisectors
intersection) and it follows the center of the circle inscribed into triangle (see fig. 3).

In what follows we shall denote the radius of the circle circumscribed about triangle by $R$, the radius of the circle inscribed into triangle by $r$. As usual $s$ is notion of area of the triangle and $p=\frac{a+b+o}{2}$ is an semiperimeter of triangle.


fig. 2

fig e 3

Now finished the introduction into region of necessary concepts we shall appeal to the series of problem where the main role play altitudes of triangle and orthogonal elements of triangle, i.e. perpendiculars drawn from some point to the triangle s sides.
We start from geometric correlations (equalities and inequalities) in which altitudes participate.

1. Since $s=\frac{a \cdot h_{a}}{2}=\frac{b \cdot h_{b}}{2}=\frac{c h_{c}}{2}$, then $a=\frac{2 \cdot s}{h_{a}}, b=\frac{2 \cdot s}{h_{b}}, c=\frac{2 \cdot s}{h}$. Hence,
in particular

$$
\begin{equation*}
a: b: c=\frac{1}{h_{a}}: \frac{1}{h_{b}}: \frac{1}{h_{c}} \tag{1}
\end{equation*}
$$

By using this fact. we can carry triangle building out by three given
2. From other hard, $a+b+c=2 p=2 S \cdot\left(\frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}}\right) \Leftrightarrow \frac{p}{S}=\frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}} \Leftrightarrow$

$$
\begin{equation*}
\Leftrightarrow \quad \frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}}=\frac{1}{r} \tag{2}
\end{equation*}
$$

3. $5=\frac{a \cdot b \cdot \sin \gamma}{2}=\frac{2 S}{h_{a}} \cdot \frac{2 S}{h_{b}} \cdot \frac{\sin \gamma}{2} \Longleftrightarrow$
$\Leftrightarrow \quad \mathrm{S}=\frac{\mathrm{h}_{a} \cdot \mathrm{~h}_{\mathrm{b}}}{2 \sin \gamma}$
where $\gamma$ is an angle between the sides a \& b (fief)

fig 4 4. $h_{a}=b \sin y$ and since by the sine theorem $b=2 R \cdot \sin \beta x \sin y=\frac{0}{2 R}$ we get two formulas for $h_{a}: \quad h_{a}=2 R \cdot \sin \beta \cdot \sin \gamma \quad Q_{a} \quad h_{a}=\frac{b \cdot c}{2 R}$.
4. Since by Heron's formula $S=\sqrt{p \cdot(p-a) \cdot(p-b) \cdot(p-c)}$, then

$$
\begin{equation*}
h_{a}=\frac{2 S}{a}=\frac{2 \cdot \sqrt{p \cdot(p-a) \cdot(p-b) \cdot(p-c)}}{a} \tag{4}
\end{equation*}
$$

Prove that $h_{a} \leqslant \sqrt{p \cdot(p-a)}$. (when equality holds?)
6. Prove that if $\frac{1}{h_{c}}=\frac{1}{a}+\frac{1}{b}$, then $r \leq 120^{\circ}$.

Solution. Since $h_{c}=\frac{a b}{2 R}$, we get $\frac{2 R}{a b}=\frac{1}{a}+\frac{1}{b} \Leftrightarrow a+b=2 R$. Then by cosine theorem $d^{2}=a^{2}+b^{2}-2 a b \cdot \cos \gamma$ and by the sine theorem $c=2 R \cdot \sin \gamma=(a+b) \cdot \sin \gamma$.
Hence, $(a+b)^{2}-(a+b)^{2} \cdot \cos ^{2} \gamma=a^{2}+b^{2}-2 a b \cdot \cos \gamma \Leftrightarrow 2 a b \cdot(1+\cos \gamma)=(a+b)^{2} \cdot \cos ^{2} \gamma$ $\Rightarrow 2 a b \cdot(1+\cos \gamma) \geqq 4 a b \cdot \cos ^{2} \gamma \Leftrightarrow 1+\cos \gamma \geq 2 \cos ^{2} \gamma \Leftrightarrow-\frac{1}{2} \leq \cos \gamma \leq 1 \Leftrightarrow$ $\Leftrightarrow \gamma \leq 120^{\circ}$, T.K. O< $\ll \pi$.
7. Prove inequalit.y $h_{a}+h_{b}+h_{c} \geq 9 \cdot r$. Solution.
$h_{a}+h_{b}+h_{c}=2 S \cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \cdot \frac{2 p}{2 p}=\frac{S}{p} \cdot(a+b+c) \cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq g \cdot r$, since $\frac{S}{F}=r$ and $(a+b+c) \cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq 9 \Leftrightarrow \frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}+3 \geq 9 \Leftrightarrow$ $\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right) \geq 6$. As long as $\frac{a}{b}+\frac{b}{a} \geq 2$, since $a^{2}-2 a b+b^{2} \geq 0 \Leftrightarrow(a-b)^{2} \geq 0$, then similarly $\frac{a}{c}+\frac{c}{a} \geq 2 \& \frac{b}{c}+\frac{c}{b} \geq 2$.

Notice that each of aititudes in triangle is greater than $2 r$. Actually, $h_{a}=\frac{2 s}{a}$, but $a<p$ since $a<\frac{a+b+c}{2} \Leftrightarrow b+c-a>0$. Thus, $h_{a}>\frac{2 S}{p}=2 r$.
8. Prove inequality $\frac{1}{2 r}<\frac{1}{h_{1}}+\frac{1}{h_{2}}<\frac{1}{r}, h_{1}, h_{2}$ are any altitudes of triangle.
9. Prove that if $a<b$, then $a+h_{a} \leq b+h_{b}$. When does equality occur ? Solution.
$\left\{\begin{array}{l}h_{a}=b \cdot \sin \gamma \\ h_{b}=a \cdot \sin \gamma\end{array} \Rightarrow h_{a}-h_{b}=(b-a) \cdot \sin \gamma \leq b-a\right.$, since $\quad 0<\sin \gamma \leqslant 1$.
Therefore equality is possible when $\gamma=90^{\circ}$, i.e. When triangle is rieht with $a, b$ its legs and in this ase $h_{a}=b$ \& $h_{b}=a$. (Let try do the same without
$\triangle A B C$ is triange with aqute angles and
Let $A A_{1} \& B B_{1}$ be an Eltitudes drawn
from the vertex $A$ \& $B$ onto sides $B C$ \& $A C$
respectively (fiE). $\angle \mathrm{AOB}=\angle \mathrm{B}_{1} O A_{1}=180^{\circ}-\mathrm{C}=$ $=A+B$, since inside of quadrangle $\mathrm{CB}_{1} \mathrm{OA}_{1}$. two of the angles are right. And $\angle A O C_{1}=\bar{B}$, $\angle B O C=A$ as an angles with mutually perpendicular sides. Therefore if we circumscribe a circle round the triangle $A O B$ with $R^{\prime}$ is its radii, then by sine theorem we obtain


$$
2 R=\frac{c}{\sin (\hat{A}+B)}=\frac{c}{\sin \bar{C}}=2 R, \text { i.e. } R=R \text {, where } R \text { - radii of the circle }
$$

Gireumscrithed about triangle ABC. And so,
The circles circumscribed about triancles AOB, BC. DoA (where o is orthcenter and circle circumscribed about triangle ABC have the equal radii.

Moreover, we derived the values of angles $\angle A O B=\hat{A}+\hat{B}, \angle A O C=\hat{A}+\hat{C}, \angle C O B=\hat{C}+\hat{B}$.

$\angle O B A=\angle \mathrm{B}_{1} \mathrm{BA}=90^{\circ}-\dot{A}, \quad \angle \mathrm{OAB}=\angle \mathrm{A}_{1} \mathrm{AB}=90^{\circ}-\hat{\mathrm{B}} \Rightarrow$
$\angle A O B=180^{\circ}-(\angle O A B+\angle O B A)=\hat{A}+\hat{B}$. The result is the same. Compute $\angle A O C$. $\angle A O C=\angle A_{1} O C=90^{\circ}-\angle O C A_{4}$ But $\angle O C A_{1}=\angle \mathrm{BCO}_{1}=90^{\circ}-\angle B$. Hence, $\angle A O C \angle B$. (We could do it briefly $\angle A O C_{1}=\angle A_{1} B A=\angle B$ as the angles with
 mutually perpendicular sides. Similarly,
$\angle \mathrm{BOC}=\angle \mathrm{BOC}_{1}=\angle A$.
11. We are going to determine the distance from the vertex of triangle up to the ortocentre D. To be precise let $4 O$ this distance.
Case $1 . A B C$ is ar ı acute triangle (fl gl)
By the sine theorem from triangle $A O B$
we have $\frac{A O}{\sin \angle A B O}=2 R \Leftrightarrow \frac{A O}{\sin \left(90^{\circ}-\hat{A}\right)}=2 R$
$\Leftrightarrow \frac{A O}{\cos \hat{A}}=2 R \Leftrightarrow A O=2 R \cdot \cos \hat{A}=$
$=\frac{a}{\sin \hat{A}} \cdot \cos \hat{A}=\operatorname{a} \cdot \operatorname{ctg} \hat{A} . \quad$ Also
$\operatorname{Co}=\frac{\sigma \cdot \operatorname{ctg} \hat{\mathrm{C}}=2 \mathrm{R} \cdot \cos \hat{\mathrm{C}},}{\mathrm{BO}}=\frac{\mathrm{b} \cdot \operatorname{ctg} \hat{\mathrm{B}}=2 \mathrm{R} \cdot \cos \hat{\mathrm{B}}}{\mathrm{A}}$.

fig. 7

Case 2 . ABC is an obtuse triangle. Special situation appear by computing the distance from the orthocentre to vertex of obtuse angle.
Consider triangle OAC (see fig. 8),
then

$$
\frac{O C}{\sin \angle O A C}=2 R \Leftrightarrow \frac{O C}{\sin \left(90^{\circ}-\angle A O A_{1}\right)}=2 R
$$

$=-2 R \cdot \cos \hat{C}=-\frac{\cos \hat{C}}{\sin \hat{C}}=-c \cdot \operatorname{ctg} \hat{\mathrm{Q}}$.


Hence by summation the results derived in the cases of acute and obtuse triangles:

$$
\begin{align*}
& O A=a \cdot|\operatorname{ctg} \hat{A}|=2 R \cdot|\cos \hat{A}| \\
& O B=b \cdot|\operatorname{ctg} \hat{B}|=2 R \cdot|\cos \hat{B}|  \tag{5}\\
& O C=O \cdot|\operatorname{cte} \hat{C}|=2 R \cdot|\cos \hat{O}|
\end{align*}
$$

le. Compute the distance from the orthooentre to the sides. We consider two Gases for acute and obtuse triangles.
Base 1. (see fig. 7). ( $\triangle A B C$ with aqute angles)

$$
\begin{aligned}
\mathrm{OA}_{1} & =h_{a}-2 R \cdot \cos \hat{A}=2 R \cdot \sin \hat{B} \cdot \sin \hat{C}-2 R \cdot \cos \hat{A}= \\
& =2 R \cdot(\sin \hat{B} \cdot \sin \hat{C}+\cos (\hat{B}+\hat{C}))=2 R \cdot \cos \hat{B} \cdot \cos \hat{C}
\end{aligned}
$$

Case $Z$ (Its. 8) ( $\triangle A B C$ with one obtuce angle)

$$
\begin{aligned}
& O_{1}=h_{c}+O C=h_{c}-2 R \cdot \cos \hat{C}=2 R \cdot \cos \hat{A} \cdot \cos \hat{B} \\
& O A_{1}=O A-A A_{1}=2 R \cdot \cos \hat{A}-h_{a}=-2 R \cdot \cos \hat{B} \cdot \cos \hat{C}: \\
& O B_{1}=-2 R \cdot \cos \hat{B} \cdot \cos \hat{A}
\end{aligned}
$$

Hence we have:
(the case of right triangle stroke off as trivial).
Now we can formulate derived results as
a) The distance from the vertex to the orthcentre of triangle le equal to product of the length of opposite side to the absolute value of cotangent of the angle by this vertex or the product of diameter of the circle oiroumsoribed about triangle to the absolute value of cosine of the angle by this vertex;
b) The distance from the ortocentre of triangle to the side of triangle is equal to the product of diameter of the circle oiroumsoribed about triangle to the absolute value of the product of cosines of the angles lying by this side;
c) The ratio of the distance from the ortocentre of triangle to a vertex to the distance from the orthocentre to the opposite side is equal to the ratio of oosine of the angle by this vertex to the product of cosines of the angles lying by this side.

Moreover, we have:

$$
\begin{equation*}
A O \cdot O A_{1}=B O \cdot O B_{1}=\operatorname{CO} \cdot O C_{1}=4 R^{2} \cdot|\cos \hat{A} \cdot \cos \hat{B} \cdot \cos C| \tag{7}
\end{equation*}
$$

13. Now the point of us becomes the orthotriangle, i.e. triangle in which vertices are the feet of altitudes of the given triangle.
We consider case of acute triangle and leave the case of obtuse triangle for the reader. So, let $A B C$ be an acute triangle, $A A_{1}, B B_{i}, C C_{1}$ - altitudes, $A_{i} B_{1} C_{1}$ orthotriangle:
13.1. Since $\angle A C_{1} C=\angle A A_{1} C=90^{\circ}$, then points $C_{1}$
\& $A_{1}$ are lying on the circle with diameter $A C$ (see fig. 9 ). But then $\angle \mathrm{C}_{1} \mathrm{CA}=\angle \mathrm{C}_{1} \mathrm{~A}_{1} \mathrm{~A}=90^{\circ}-\hat{A}$
as inscribed and as leaning on the same arc. Using similar way for the quardangle $A B A A_{1} \mathrm{~B}_{1}$ and angles $\angle A A_{1} B_{1} \& \angle A B B_{1}$ yields equality
$\angle A A_{1} B=\angle A B B_{1}=90^{\circ}-\hat{A}$. Sjmilarly,
$\angle A_{1} C_{1} \mathrm{C}=\angle A_{1} A C=90^{\circ}-\hat{C} \& \angle C_{1} B_{1} B=\angle \mathrm{C}_{1} \mathrm{CB}=90^{\circ}-\hat{B}$.
From this immediately follows that:


Fig. 9 .
a) The altitudes of triangle $A B C$ are bisectors in orthotriangle;
b) Orthocentre $O$ of triangle $A B C$ is the centre of the circle inscribed into orthotriangle. (By the way, what is radjus equal to ?)
c) $\angle \mathrm{BC}_{1} \mathrm{~A}_{1}=\angle \mathrm{AC}_{1} \mathrm{~B}_{1}=\hat{\mathrm{C}} ; \quad \angle \mathrm{BA}_{1} \mathrm{C}_{1}=\angle \mathrm{CA}_{1} \mathrm{~B}_{1}=\mathrm{A} ; \quad \angle \mathrm{C}_{1} \mathrm{~B}_{1} \mathrm{~A}=\angle \mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}=\mathrm{B}$. It follows that triangles $A_{1} \mathrm{BC}_{1}, \mathrm{~A}_{1} \mathrm{~B}_{1} \mathrm{C}$ and $\mathrm{AB}_{1} \mathrm{C}_{1}$ are similar.
Compute the ratio of similitude. For this sufficiently to consider one pair of triangles $A B C$ \& $A_{1} \mathrm{BC}_{1} . \mathrm{BC}_{1}=\mathrm{a} \cdot \cos \hat{\mathrm{B}}, \mathrm{BC}=\mathrm{a}$. Hence, the ratio of similitude of the triangles $A B C \& A_{1} B C_{1}$ is equal to $\cos B$. Similarly, $A_{1} B_{1} C \simeq A B C$ with the ratio $\cos \hat{C}$ and $A B C \simeq A B_{1} C$ with the ratio $\cos \hat{A}$. Thus,

$$
A_{1} C_{1}=b \cdot \cos \hat{B}, \quad A_{1} B_{1}=c \cdot \cos \hat{C}, \quad B_{1} C_{1}=a \cdot \cos \hat{A} .
$$

Compute the area of the orthotriangle $A_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$. If S is the area of triangle ARC, then
$\begin{aligned} & S_{A_{1} H_{1} C_{1}}=S-S \cdot\left(\cos ^{2} \hat{A}+\cos ^{2} \hat{B}+\cos ^{2} \hat{C}\right)=S \cdot\left(1-\cos ^{2} \hat{A}-\cos ^{2} \hat{B}-\cos ^{2} \hat{C}\right)= \\ &=2 S \cos \hat{A} \cdot \cos \hat{B} \cdot \cos \hat{C}\end{aligned}$
Compute the semiperimeter of the orthotriangle:

$$
p=\frac{a \cdot \cos \hat{A}+b \cdot \cos \hat{B}+c \cdot \cos \hat{C}}{2}
$$

From this we can compute the radius of the circle inscribed into orthotriangle
13.2. But the orthotriangle possesses one more wonderful exclusjve property The perimeter of the orthotriangle is the smallest perimeter among all perimetens of triansles inscribed into given triangle. (Triangle KLM is to be
said inscribed into given triangle if on each side of given triangle lie exactly one vertex of the triangle KLF).
This statement known as Faniano's theorem. We are going to prove this theorem. For any inscribed triangle KLM into triangle ABC we shall denote the perimeter of this triangle by $P(K, I, M)$. Situate the points: point $K$ lies on $A B$, L lies on $A C$ and $M$ lies on $B C$. Then the theorem can be rewritten briefly Find points $\mathrm{E}, \mathrm{H}, \mathrm{F}$ on the sides $\mathrm{AB}, \mathrm{AC}, \mathrm{BC}$ respeotively, such that:

But since $\min _{K, L} P(K, L, M)=\min _{\mathrm{L}}\left\{\min _{\mathrm{K}} \mathrm{M} P(\mathrm{~K}, \mathrm{~L}, \mathrm{M})\right\}$ we 11 prove it by following way. Fix the point $L$ on the side $A C$ and find $\underset{K}{\min } P(K, L, M)$. The minimum, of course, will depend from $L$ as depend from $L$ the location of points $K \& M$ on the sides $A B$ \& $C D$, i.e. we get some function $d(L)=\min _{\boldsymbol{M}} P(K, L, M)$ and location of points $K(L) \& M(L)$ (this notion shows dependence of location $K$ \& $M$ from $L$ Than we find location of point $H$ on $A C$ such that $d(H)=\min _{\mathrm{L}} \mathrm{d}(\mathrm{L})$ and in this Gase $E=K(H) \& F=M(H)$. Actually, $d(H) \leq d(L) \leq P(K, L, M)$. But by definition $d(H)$ ie the perimeter of the triangle EFH. This reasoning is the ground of further actions and also is the plan of solution of this problem.

Let the point $L$ be situated by arbitrary location on the side $A C$ (see tig. 10) $K \& M$ be taken arbitrary on the sides $A B \& B C$.
Let $L_{1} \& L_{2}$ be the symmetric points to the $L$ relatively lines $A B$ \& $B C$.
$L_{1}$ is perpendicular to $A B$, intersect $A B$ at the point $S$ and bjsecting itself by $S$; $\mathrm{LL}_{2}$ is perpendicular to BC , intersect BC at the point T and bisecting itself by $T$. Connect the points $L_{1} \& L_{2}$. This segment intersect the sides $A B$ and CB at the points $K_{1}{ }^{\prime} M_{1}$ respectively.


Fie: 10

Connect them with L. Now look what we got:
So, $K L_{1}=K L \& L_{2}=M L$, therefore $K L_{1}+K M+M L_{z}=P(K, L, M)$. But $L_{1} L_{2} \leq K L_{1}+K M+M L_{2}$ as line segment connecting broken line's vertices. Moreover, location of points $L_{1}, L_{2}, K_{1} \& M_{1}$ unique depends from location of $L$ on $A C$ only (it does not depend from location of $K$ and $M$ ).
$L_{1} K_{1}+K_{1} M_{1}+M_{1} L_{2}=L K_{1}+K_{1} M_{1}+M_{1} L=P\left(K_{1}, L_{1} M_{1}\right)$. Thus, independently from the location $K \& M$ on the sides $A B \& A C: P\left(K_{1}, L, M_{1}\right) \leq P(K, L, M)$. In other words, $P\left(K_{1}, L, M_{1}\right)=\min _{K} P(K, L, M)$.

But $S T=\frac{1}{2} \cdot L_{1} L_{1}$ and it is a diagonal in quadrangle LsET which can be inscribed into circle so that the sum of opposite angies would be equal to $180^{\circ}$, with BL is diameter of this cirole. By the sine theorem $\mathrm{ST}=\mathrm{BL} \cdot \sin \hat{\mathrm{B}}$, i.e. $d(L)=L_{1} L_{2}=2 \cdot \operatorname{ST}=2 \cdot B L \cdot \sin \hat{B}$ depend exclusively from the leneth of $B T$. and get the smallest valueronly when $L$ is the feet. $\frac{H^{\prime}(H)}{}$ the altitude drawn from $B$ to the side AC. (fig./l)
We show that if $L$ is the feet $\frac{H}{\text { of }}$ the altitude, then $E=K(B) \& F=M(H)$ will be the feet of the altitudes drawn to the sides $A B$ \& $B C$ respectively i.e. we re going to prove that EFH is the orthotriangle (fig. 11).

As said above, the quadrangle HSBT inscribed into circle. Connect $S$ with $T$ then, $\angle \mathrm{SHB}=\angle \mathrm{ST} B=\dot{A}$. Similarly, $\angle \mathrm{TSB}=\dot{\mathrm{C}}$. But since $\mathrm{H}_{1} \mathrm{H}_{2}$ is parallel to ST (ST is the midline in the triangle $\mathrm{H}_{1} \mathrm{HH}_{2}$ ) then $\hat{\mathrm{A}}=\angle \mathrm{BFE}=\angle \mathrm{CFH}_{2}=\angle \mathrm{HFT} \& \hat{\mathrm{C}}=\angle \mathrm{BEF}=\angle \mathrm{H}_{1} \mathrm{ES}=\angle \mathrm{SEH}$. Thus, $\angle \mathrm{HEF}=180^{\circ}-2 \cdot \widehat{\mathrm{C}}, \angle \mathrm{EFH}=180^{\circ}-2 \cdot \hat{A}$ and it means that $\angle \mathrm{EHF}=180^{\circ}-2 \cdot \hat{\mathrm{~B}}, \angle \mathrm{EHA}=\angle \mathrm{FHC}=\hat{\mathrm{B}}$.
So, triangles $A E H, F C H, ~ E E B$ are mutually similar and each one of them is similax to the trianele ABC , with $\mathrm{AH}=\mathrm{c} \cdot \cos \hat{\mathrm{A}}$. (becaury $\left.\begin{array}{c}B H i s \\ \text { alcitade }\end{array}\right)$ Thus, $A E=b \cdot \cos A$ and it means that $E$ is the feet of altitude dropped from $C$ to $A B$.


Fig. 11
Similarly, $C H=a \cdot \cos \hat{C} \& C F=b \cdot \cos \hat{C}$ and it means that $F$ is the feet of altitude dropped from $A$ to the side BC. Here we used that a side of triangle and its projection determine the altitude (such determination is unique). I think that we ve talked enough about orthotriangle, we arrived to the third part of this article which is linked with properties of the distance from arbitrary point in triangle to the its sides.
Denote by $d_{a}, d_{b}, d_{c}$ the distances from arbitrary point $O$ inside triangle $A B C$ to the its sides respectively, and consider following problems with those values.

1. Prove min $\left\{h_{a}, h_{b}, h_{c}\right\} \leq d_{a}+d_{b}+d_{c} \leq \max \left\{h_{a}, h_{b}, h_{c}\right\}$

When does equality occur ? (How do things go for equilateral triangle ?)
2. Find such point 0 inside given triangle so that the sum of squares of the distances from this point to the sides of triangle will be greatest.
3. Prove

$$
d_{a} \cdot d_{b} \cdot d_{c} \leq \frac{8 \cdot s^{3}}{27 \cdot a b c}
$$

When does inequality turn to equality?
For thesolving all those problem will be useful the formula (also this formula is useful in other situations).

$$
S=\frac{a \cdot d_{a}}{2}+\frac{b \cdot d_{b}}{2}+\frac{c \cdot d_{c}}{2}=\frac{a \cdot d_{a}+b \cdot d_{b}+c \cdot d_{c}}{2}
$$

Solutions. (see fig. 12)
Problem $\hat{i}$. Let $\mathrm{a}=$ min $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, then $\left.h_{a}=\frac{2 \mathrm{~S}}{\mathrm{a}}=\max \quad i \mathrm{~h}_{\mathrm{a}}, \mathrm{h}_{\mathrm{b}}, \mathrm{h}_{\mathrm{c}}\right\}$ and

$$
B \geq \frac{a}{2} \cdot\left(d_{a}+d_{b}+d_{c}\right) \Leftrightarrow \frac{2 S}{a}=h_{a} \geq d_{a}+d_{b}+d_{0}
$$

Let a-max $\{a, b, a\}$, then $h_{a}=\frac{2 S}{a}=\min \left\{h_{a}, h_{z}, h_{a}\right\}$ and
$s \leq \frac{a}{2} \cdot\left(d_{a}+d_{b}+d_{c}\right) \Leftrightarrow \frac{2 S}{a} \leq d_{a}+d_{b}+d_{c} \Leftrightarrow \min \left\{h_{a}, h_{b}, h_{c}\right\} \leq d_{a}+d_{b}+d_{c}$.
so, min $\left\{h_{a}, h_{b}, h_{c}\right\}<d_{a}+d_{b}+d_{c}$.
We re interesting in cases of equality.
a) The triangle is equilateral, then min $\left\{h_{a}, h_{b}, h_{c}\right\}=\max \left\{h_{a}, h_{b}, h_{c}\right\}$, and it follows that for any point $O$ inside triangle $d_{a}+d_{b}+d_{c}=h$, where $h$ is altitude of equilateral triangle ake place
b) Let $a<b=c$, then $h_{a}=\max \left\{h_{a}, h_{b}, h_{c}, d_{a}+d_{b}+d_{c}=h_{a}\right.$. If o coincides with the vertiex. $A$, then $d_{b}=d_{c}=0 \& d_{a}=h_{a}$.
Let $O$ be not ooincided with the vertex $A$, then $d_{b}$ or $d_{c} \neq 0, \frac{a}{2} \cdot\left(d_{a}+d_{b}+d_{c}\right)=S$ From other hand $c=\frac{a}{2} \cdot d_{a}+\frac{b}{2} \cdot d_{b}+\frac{c}{2} \cdot d_{c}$. Hence,
$\frac{d_{b} b+d_{c} \cdot+d_{a} a}{2}=s>\frac{d_{a} a+d_{b} a+d_{a} a}{2}=$ S. We got contradiction
Consider now the right-hand side of inequality. In the case of equality we have $d_{a}+d_{b}+d_{c}=h_{b}=h_{c}(b=0)$. Let $O$ be lying on the side a then $d_{a}=0$ and $d_{b}+d_{c}=h_{b}=h_{c}($ prove it by yourself !).
suppose that the point o isn t lying on the side a, then da $>0$

In this case:
$\frac{b \cdot\left(d_{b}+d_{c}\right)+a \cdot d_{a}}{2}=\xi<\frac{b}{2} \cdot\left(d_{a}+d_{b}+d_{c}\right)=\frac{b}{2} \cdot h_{b}=5$. We got contradiotion
So, if $a<b=0$, then equality min $\left\{h_{a}, h_{b}, h_{c}\right\}=d_{a}+d_{b}+d_{c}$ is possible when point
O lies on the side a; equality mav $\left\{h_{a}, h_{b}, h_{c}\right\} d_{a}+d_{b}+d_{c}$ is poseible if and only if the point $O$ coincidee with the vertex $A$.

The Gase for isosceles triangle $a=b<c$ we leave for the reader.
We onsider the case of arbitrary triangle (all sides are djstinct).
Set acbsc, then $h_{a}>h_{b}>h_{c}$. Consider case of equality $h_{a}=d_{a}+d_{b}+d_{c}$
If $O$ does not ooincide with $A$, then either d or d are not equal to aero.

Then
$S=\frac{a \cdot h_{a}}{2}=\frac{a \cdot\left(d_{a}+d_{b}+d_{c}\right)}{2}<\frac{a \cdot d_{a}+b \cdot d_{b}+c \cdot d_{c}}{2}=S$. We got contradiction.
So, equality $h_{c} \frac{m a x}{\left.=d_{a}+h_{a}+h_{c}, h_{c}\right\}}$ is possible only when point $O$ coincides with $A$.
In the case of equality $h_{c}=d_{a}+d_{b}+d_{c}$ we $d o$ the same. If $O$ coincides with $C$ then, $d_{c}=h_{c} \& d_{a}=d_{b}=0$. If point $O$ doesn $t$ coincide with $c$, then $d_{c}<h_{c} \&$ $d_{a}$ or $d_{b} \neq 0$. Then
$s=\frac{h_{c} \cdot c}{2}=\frac{c \cdot\left(d_{c}+d_{a}+d_{b}\right)}{2}>\frac{c \cdot d_{c}+a \cdot d_{a}+b \cdot d_{b}}{2}$. But again we got contradiction.
And so, equality $h_{c}=\min \left\{h_{a}, h_{b}, h_{c}\right\}=d_{a}+d_{b}+d_{c}$ is possible only when the point 0 coincides with the vertex $C$.

Problem 2. Use Cauchy-Bunyakovsky inequality (see the article in this issue in department "Delta" s school") to expression $2 S=c \cdot d_{c}+b \cdot d_{b}+a \cdot d_{a}$. We have:

$$
4 S^{2}=\left(0 \cdot d_{c}+b \cdot d_{b}+a \cdot d_{a}\right)^{2} \leq\left(c^{2}+b^{2}+a^{2}\right) \cdot\left(d_{c}^{2}+d_{b}^{2}+d_{a}^{2}\right)
$$

Hence $\quad d_{a}^{2}+d_{b}^{2}+d_{c}^{2}=\frac{4 \cdot s^{2}}{a^{2}+b^{2}+c^{2}}$. And equality occur if $\frac{d_{a}}{a}=\frac{d_{b}}{b}=\frac{d_{c}}{d}$. Let $k$ be a factor of proportionality, then $d_{c}=k a, d_{b}=k b, d_{c}=k c$. Show that such point exist in triangle.


Let $O$ be such point that occur those equalities. Draw through the point $O$ from vertices $A, B$ \& $C$ lines up to intersection with the sides at points $A_{1}, B_{1} \& C_{1} .(f i g .13)$

$$
S_{A O B}=\frac{c \cdot d_{c}}{2}=\frac{k c^{2}}{2} ; S_{B O C}=\frac{a \cdot d_{a}}{2}=\frac{k a^{2}}{2} ; S_{A O C}=\frac{b \cdot d_{b}}{2}=\frac{k b^{2}}{2}
$$

Then

$$
\frac{S_{A O B}}{S_{B O C}}=\frac{a^{2}}{a^{2}}=\frac{A B_{1}}{B_{1} C} ; \frac{S_{A O B}}{S_{A O C}}=\frac{c^{2}}{b^{2}}=\frac{B A_{1}}{A_{1} C} \text { and similarlv, } \frac{B_{1}}{C_{1} A}=\frac{a^{2}}{b^{2}}=\frac{S_{B O C}}{S_{A O C}}
$$

Now, prove that if we take on the sides of triangle $A B C$ points $A_{1}, B_{1} \& C_{1}$ such, zat; $\frac{A B_{1}}{B_{1} C}=\frac{c^{2}}{a^{2}} ; \frac{C A_{1}}{A_{1} B}=\frac{b^{2}}{c^{2}} ; \frac{B C_{1}}{C_{1} A}=\frac{a^{2}}{b^{2}}$, then lines $A A_{1}, B B_{1}, C C_{1}$ intersect at one point (this point called Leman's point of the triangle ABC). Suppose that we already drew Jines $A A_{1} \& B B_{1}$ and $\frac{C A_{1}}{A_{1} B}=\frac{b^{2}}{c^{2}} \& \frac{A B_{1}}{B_{1} C}=\frac{c^{2}}{a^{2}}$.

Let $O$ be the point of intersection of those lines. Draw the line trough point $O$ and $C$ up to intersection with $A B$ at point $C_{1}$. Prove that $\frac{A C}{C_{1} B}=\frac{b^{2}}{a^{2}}$. Then, as easily to notice $\frac{A B_{1}}{B_{1} C^{\prime}} \cdot \frac{C A_{1}}{A_{1} B} \cdot \frac{\mathrm{BC}_{1}}{C_{1} A}=\frac{S_{A O B}}{S_{B O C}} \cdot \frac{S_{C O A}}{S_{\mathrm{AOB}}} \cdot \frac{S_{\mathrm{BOC}}}{S_{\mathrm{COA}}}=1$.

From other hand: $\frac{A B_{1}}{B_{1} C} \cdot \frac{C A_{1}}{A_{1} B}=\frac{c^{2}}{a^{2}} \cdot \frac{b^{2}}{c^{2}}=\frac{b^{2}}{a^{2}}$. Hence, $\frac{A C_{1}}{C_{1} B}=\frac{b^{2}}{a^{2}}$.
(Using the idea of this proof the reader can easily prove
Cheve's Theorem: On sides of triangle $A B C$ taken points: $A_{1}$ on $B C, C_{1}$ on $A B$, $\mathrm{B}_{1}$ on AC . For the segments $A A_{1}, B B_{1} \& C_{1}$ to be intersect at one point $O$ it is necessary and sufficient that

$$
\frac{A B_{1}}{B_{1} C} \cdot \frac{C A_{1}}{A_{1} B} \cdot \frac{B C_{1}}{C_{1} A}=1
$$

such segments used to call chevians and the points of triangle $A_{1}, B_{1}, C_{1}$ for which $A A_{1},{B B_{1}}_{1}, C_{1}$ are chevians call conourrents).
We offer the reader to carry out the constructing of point 0 in the problem.
And, finally, notice that the smallest value of sum $d_{d}^{2}+d_{b}^{2}+d_{c}^{2}$ is equal to $\frac{4 S^{2}}{a^{2}+b^{2}+c^{2}}$ and reaches this value when $k=\frac{2 S}{a^{2}+b^{2}+c^{2}}\left(\Longleftarrow S_{A O B}+S_{B O C}+S_{C O A}=S\right)$

As exercise we offer to the reader series of geometric inequalities and their corollaries are another reachable lower bound for the sum of squares of the distance from arbitrary point of triangle to its sides. However, this lower bound can be reached if we refuse from complete determination of triangle, i.e. for example determination of all its sides.

1. Prove
a) $\sin \frac{A}{z} \cdot \sin \frac{B}{z} \cdot \sin \frac{C}{z} \leq \frac{1}{8}$, where $\hat{A}, \vec{B}, \hat{C}$ are angles of triangle with sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ (Hint. Prove that $\sin \frac{\hat{A}}{2} \leq \frac{a}{2 \sqrt{ } b c}$ by the cosine theorem).
b) $\cos \frac{\hat{A}}{2} \cdot \cos \frac{\hat{B}}{2} \cdot \sin \frac{\hat{C}}{2} \leqslant \frac{1}{8} \cdot\left(\right.$ Hint. $\left.\operatorname{set} \alpha=\frac{\pi}{2}-\hat{A}, \hat{\rho}=\frac{\pi}{2}-\hat{B}, \gamma=\frac{\pi}{2}-\hat{C}\right)$
0) $\sin ^{2} \frac{\hat{A}}{2}+\sin ^{2} \frac{\hat{B}}{2}+\sin ^{2} \frac{\hat{C}}{2} \geqslant \frac{3}{4} \quad$. Equality is reachable when $\hat{A}=\hat{B}-\hat{C}$
(Hint Prove - $\left.\sin ^{2} \frac{\hat{A}}{2}+\sin ^{2} \frac{\hat{B}}{2}+\sin ^{2} \frac{\hat{C}}{2}=1-2 \sin \frac{\hat{A}}{2} \cdot \sin \frac{\hat{B}}{2} \cdot \sin \frac{\hat{C}}{2}\right)$
d) $a^{2}+b^{2}+c^{2} \leq g \cdot R^{2}$. Find the condition of appearance of the equality.
2. Prove: a) $p=r \cdot\left(\operatorname{ctg} \frac{\hat{A}}{2}+\operatorname{ctg} \frac{\hat{B}}{z}+\operatorname{ctg} \frac{\hat{C}}{z}\right), p-$ semiperimeter, $r$ - radius of the circle inscribed into triangle.
b) $\mathrm{S}=2 \mathrm{R}^{2} \cdot \sin \hat{A} \cdot \sin \mathrm{~B} \cdot \sin \mathrm{C}, \mathrm{S}$ - the area of triangle; R - radius of the circle circumscribed about triangle.
3. If $\hat{A}, \hat{B}, \hat{C}$ are the angles of triangle, then

$$
\begin{aligned}
\text { a) } \operatorname{tg} \hat{A}+\operatorname{tg} \hat{B}+\operatorname{tg} \hat{C} & =\operatorname{tg} \hat{A} \cdot \operatorname{tg} \hat{B} \cdot \operatorname{tg} \hat{C} \\
\text { b) } \operatorname{ctg} \frac{\hat{A}}{2}+\operatorname{ctg} \frac{\hat{B}}{2}+\operatorname{ctg} \frac{\hat{C}}{2} & =\operatorname{ctg} \frac{\hat{A}}{2} \cdot \operatorname{ctg} \frac{\hat{B}}{2} \cdot \operatorname{ctg} \frac{\hat{C}}{2}
\end{aligned}
$$

4. Prove:

$$
r=4 R \cdot \sin \frac{\hat{A}}{2} \cdot \sin \frac{\hat{B}}{2} \cdot \sin \frac{\hat{C}}{2}
$$

5. $\mathrm{R} \geq 2 \cdot r$, when equality occur only in the case of equilateral triangle. (Try to find a geometric proof).
6. Prove $\mathrm{s} \geq 3 \sqrt{3} \cdot r^{2}$. (Hint. Use Heron $s$ formula for s ; use equality $\mathrm{s}=\mathrm{p} \cdot \mathrm{r}$ and Cauchy is inequality (see article "Variation on inequality theme")).
7. Prove

$$
\operatorname{tg} \hat{A} \cdot \operatorname{tg} \hat{B} \cdot \operatorname{tg} \hat{C} \geq 3 \sqrt{3} \text { и } \operatorname{ctg} \frac{\hat{A}}{2} \cdot \operatorname{ctg} \frac{\hat{B}}{2} \cdot \operatorname{ctg} \frac{\hat{C}}{2} \geq 3 \sqrt{3}
$$

Using inequalities $S \geq 3 \sqrt{3} \cdot r^{2} \& a^{2}+b^{2}+c^{2} \leq 9 \cdot R^{2}$ we get:

$$
d_{a}^{2}+d_{b}^{2}+d^{2} \geq \frac{4 \cdot S^{2}}{a^{2}+b^{2}+c^{2}} \geq 12 \cdot \frac{r^{4}}{R^{2}}
$$

In order to in this inequality ocour equality sufficient that $s=3 \sqrt{3} \cdot r^{2} \& a^{2}+b^{2}+c^{2}=\theta \cdot R^{2}$, that is possible if and only if triangle is equilateral and in this case equality $d_{a}^{2}+d_{b}^{2}+d_{c}^{2}=\frac{4 \cdot s^{2}}{a^{2}+b^{2}+c^{2}}$ holds if $d_{a}: d_{b}: d_{c}=a: b: c=1: 1: 1$, i.e. when the point $O$ coincides with the centre of the circle inscribed into triangle $A B C$.

Problem 3. By $A M-G M$ inequality:
$\frac{2}{3} \cdot \mathrm{~S}=\frac{a \cdot d_{a}+b \cdot d_{b}+c \cdot d_{c}}{3} \geq \sqrt[3]{a b c \cdot d_{a} \cdot d_{b} \cdot d_{c}} \Leftrightarrow \frac{8}{27} \cdot s^{3} \geq a b c \cdot d_{a} d_{b} d_{c} \Leftrightarrow$
$\Leftrightarrow \frac{8}{27} \cdot \frac{s^{3}}{a b c} \geq d_{a} \cdot d_{b} \cdot d_{c} \Leftrightarrow 27 \cdot d_{a} \cdot d_{b} \cdot d_{c} \leq h_{a} \cdot h_{b} \cdot h_{c}$. Equality ocour when $a \cdot d_{a}=b \cdot d_{b}=c \cdot d_{c}$, i.e. $d_{a}: d_{b}: d_{c}=\frac{1}{a}: \frac{1}{b}: \frac{1}{c}$.
By straightforward division equality $2 \cdot S=a \cdot d_{a}+b \cdot d_{b}+c \cdot d_{c} b y 2 \cdot g$ we get
$1=d_{a} \cdot \frac{a}{2 S}+d_{0} \cdot \frac{b}{2 S}+d_{0} \cdot \frac{a}{2 S}$ or

$$
\frac{d_{a}}{h_{a}}+\frac{d_{b}}{h_{b}}+\frac{d_{c}}{h_{c}}=1
$$

As exercises prove follows inequalities and find out when equality occur:

1. $\frac{h_{a}}{d_{a}}+\frac{h_{b}}{d_{b}}+\frac{h_{c}}{d_{c}} \geq 9$.
2. $\left(h_{a}-d_{a}\right) \cdot\left(h_{b}-d_{b}\right) \cdot\left(h_{c}-d_{c}\right) \geq 8 \cdot d_{a} \cdot d_{b} \cdot d_{c}$

## Prove Camb s theorem:

In arbitrary triangle the sum of distance from the centre of circle circumscribed about triangle to its sides is equal to the sum of radiuses of the inscribed and circumscribed circles, ie. $d_{a}+d_{b}+d_{c}=r+R$.
(Hint. Express $d_{a}, d_{b}, d_{c}, r$ through R and angles ot triangle).
Now one more time go back to the most important orthogonal element of triangle - altitude.
As before the solutions of concrete problems are the fundamental way of presentation information.

Problem Prove $a+\max =2 \mathrm{~min}\left\{h_{a}, h_{b}, h_{c}\right\}=3 \cdot r$, where semiperimeter p is given
Solution.
Let $a \leq b=0$, then $h_{a} \leq h_{b} \leq h_{c}$. In supposition amber left to prove $h_{a} \leq g \cdot r$. Since $a \cdot h_{a}=2 \cdot s=2 r p$, then $h_{a}=r \cdot \frac{2 p}{a}$. But $2 p=a+b+c$ and it means that $\frac{a+b+c}{a}=1+\frac{b}{a}+\frac{c}{a} \leq 1+1+1=3$. Equality occur when $b=a$ $\&$ can, in. in the case of equilateral triangle.

Problem Prove inequality:

$$
\begin{equation*}
\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}} \leq 1+\frac{R}{r} \tag{fig.14}
\end{equation*}
$$

Solution Let $O$ be the centre of circle radii $R$ circumscribed about triangle ABC, $d_{a} \cdot d_{b}, d_{c}$ are distance from the centre to the sides ab, respectively. $A A_{1}=m_{a} ; O A=R ; O A_{1}=d_{a}$;
From the triangle inequality $A A_{i} \geq O A+O A_{1}$ or it can be written $m_{a} \leq R+d_{a}$
Similarly, $m_{b} \leq R+d_{b} ; m_{c} \leq R+c_{c}$.
Hence.

$\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}} \leq \frac{R+d_{a}}{h_{a}}+\frac{R+d_{b}}{h_{b}}+\frac{R+d_{c}}{h_{c}}=R \cdot\left(\frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}}\right)+\frac{d_{a}}{h_{a}}+\frac{d_{b}}{h_{b}}+\frac{d_{c}}{h_{c}}=\frac{R}{r}+1$
Equality occur if triangle inequality turn to equalities, is. when o lies on the medians and then median coincide with altitude..

Therefore, only in equilateral triangle this inequality turns to equality. Attentive reader probably paid attention that in proceed of solutions appeared secondary characteristics of triangle like $p, r$ and R. However, those three value are determining the triangle no worse then its sides a,b, In partioular, we re interesting in connection between altitudes of triangle and values $p, r$ and $R$. The role of mediator here will play the area $S$, moreover we need formulas setting connection between length of the sides of triangle $a, b, c$ with $p, r$ and $R$.
We want to express $h_{a}+h_{b}+h_{c}, h_{a} \cdot h_{b}+h_{a} \cdot h_{c}+h_{b} \cdot h_{c}, h_{a} \cdot h_{b} \cdot h_{c}$ through $p, r \& R$
We shall start from most simple thing
$h_{a} \cdot h_{b}+h_{a} \cdot h_{c}+h_{b} \cdot h_{c}=\frac{4 s^{2}}{a b}+\frac{4 s^{2}}{b c}+\frac{4 s^{2}}{a c}=\frac{4 s^{2}}{a b c} \cdot(a+b+c)=\frac{4 s^{2} \cdot 2 p}{a b c}$.
But $S=p \cdot r$ and from the sine theorem
$G=\frac{a b \cdot \sin \hat{C}}{2}=\frac{a b c \cdot \sin \hat{C}}{2 \cdot c}=\frac{a b c}{4 \mathrm{~F}}$. Hence,

$$
h_{a} \cdot h_{b}+h_{a} \cdot h_{c}+h_{b} \cdot h_{c}=\frac{4 S}{a b c} \cdot p r \cdot 2 p=\frac{2 p^{2} r}{R}
$$

Find a formula which can express $s$ through $h_{a} \cdot h_{b} \cdot h_{c}$
$\operatorname{since} S=\frac{h_{a} \cdot h_{b}}{2 \sin \gamma}$, then $G=\frac{h_{a} \cdot h_{b} \cdot G}{2 \cdot \sin \gamma}=\frac{h_{a} \cdot h_{b} \cdot h_{c} \cdot c}{4 \cdot \sin \gamma}=\frac{h_{a} \cdot h_{b} \cdot h_{c} \cdot 2 R}{4}=\frac{1}{2} R_{a} \cdot h_{a} h_{b} h_{c}$.
Hence, $S=\sqrt{\frac{1}{2} R \cdot h_{a} h_{b} h_{c}}$ and $h_{a} \cdot h_{b} \cdot h_{c}=\frac{2 S^{2}}{R}=\frac{2 n^{2} p^{2}}{R}$.

Left to express the sum $h_{a}+h_{b}+h_{c}$ through $p, r$ \& $h$ :
$h_{a}+h_{b}+h_{c}=\frac{b c}{2 R}+\frac{a c}{2 R}+\frac{a b}{2 R}=\frac{1}{2 R} \cdot(a b+a c+b c)$.
By Heron s formula $\rho^{2}=p \cdot(p-a) \cdot(p-b) \cdot(p-c)$ or $\frac{g}{p} \cdot G=r^{2} \cdot p=(p-a) \cdot(p-b) \cdot(p-a)$ $=p^{3}-p^{2} \cdot(a+b+c)+p \cdot(a b+a c+b c)-a b c \cdot B u t \quad a b c=4 \cdot S \cdot R=4 \cdot p \cdot r \cdot R, a+b+c=2 p \cdot$ It follows that $p \cdot r^{2}=-p^{3}-4 p r R+p \cdot(a b+b o+a c)$. Hence.
$a b+b c+a c=r^{2}+p^{2}+4 r R$. Therefore, $h_{a}+h_{b}+h_{c}=\frac{r^{2}+p^{2}+4 r R}{2 R}$.
By derived formulas

$$
\left\{\begin{array}{l}
h_{a}+h_{b}+h_{a}=\frac{r^{2}+p^{2}+4 r \cdot R}{2 R} \\
h_{a} \cdot h_{b}+h_{a} \cdot h_{c}+h_{b} \cdot h_{c}=\frac{2 p^{2} r}{R} \\
h_{a} \cdot h_{b} \cdot h_{c}=\frac{2 r^{2} p^{2}}{R}
\end{array}\right.
$$

and by wiette's theorem for oubic equation we make following very important conclusion:

The altitudes $h_{a}, h_{b}, h_{c}$ are the roots of oubic equation:

$$
h^{3}-\frac{r^{2}+p^{2}+4 r R}{2 R} \cdot h^{2}+\frac{2 p^{2} r}{R} \cdot h-\frac{2 r^{2} p^{2}}{R}=0
$$

it can be rewritten like this

$$
2 R \cdot h^{3}-\left(r^{2}+p^{2}+4 r R\right) \cdot h^{2}+4 p^{2} r \cdot h-4 r^{2} p^{2}=0
$$

By the way we got following statement:
The lengths of sides of the triangle are the roots of cubic equation

$$
x^{3}-2 p \cdot x^{2}+\left(r^{2}+p^{2}+4 r R\right) \cdot x-4 p r R=0
$$

Similarly equation we can get for values $p-a, p-b, p-c$, for the trigonometrio function of the same name for angles, for double angles, for half angles of the triangle.

At the end of this brief tour in the country of orthogonal elements in triangle we look at construction which gives the generalization of orthotriangle. Namely, for an arbitrary point $O$ taken on the plane, the points $A_{i}, B_{i}, C_{i}$ are feet of perpendiculars drawn from the point 0 to the sides (or to their outside part) $B C, A C, A B$ of the triangle $A B C$. If those points lie on a line, then they are forming a triangle $A_{1} B_{1} C_{1}$ which is oalling pedal triangle of the given triangle $A B C$ and point $O$. Clearly, for the point 0 which is the point of intersection of altitudes, the pedal triangle is the orthotriangle. In general case, if the points $A_{i}, H_{1}, C_{1}$ lie on a line then in what Follows we shall say that these points are collinear. In this we may say that the triangle $A_{1} B_{1} \mathrm{C}_{1}$ is a singular pedal triangle. Of course, we re interesting in the cases when the pedal triangle is not singular. The following theorem gives an exhaustive answer on this question: Theorem Given triangle $A B C$ and point $O$ taken on the plane. Their pedal triangle $A_{1} B_{1} C_{i}$ is singular if and only if $O$ lies on the circle circumscribed about trianele ABC.

Proof.
Necessity. Let pedal triangle be singular, i.e. $A_{1}, B_{1}, C_{1}$ as feet of the perpendiculars dropped from the $O$ to the sides $B C, A C, A B$, are collinear or they are lying on a line. We re going to show that inthis case the point o must lie on the circle circumscribed about triangle ABC (see fig. 15).
Connect the point $O$ with $B$ and $C$.

1. Since $O O_{1}$ perpendicular to $\mathrm{OB}_{1}$ and

OB, perpendicular to AC , then $\angle \mathrm{Q}_{1} \mathrm{OB}_{1}=180^{\circ}-\hat{A}$
2. About quadrangle $O C_{1} B A_{1}$ we can circum scribe a circle, then $\quad \angle O C_{1} A_{1}=\angle O \mathrm{BA}_{1}$, as inscribed and leaning on the same arc angles. S. About quadrangle $O A_{1} B_{1} C_{1}$ we can circumscribe a circle with diameter oc, then $\angle A_{1} C O=\angle A_{1} B_{1} O$.
4. From the $1,2,3$ follows that in triangles $\mathrm{C}_{1} O \mathrm{~F}_{1}$, BOC the aneles $\angle \mathrm{C}, \mathrm{OB}=\angle \mathrm{BOC}=180^{\circ}-\hat{A}$


But then about quadrangle BACO we can ciroumscribe a, circle. It follows that the point $O$ lies on the circle circumscribed about triangle ABC.
Sufficiency. Prove inverse theorem. Let point 0 be lying on the circle circunscribed about triangle $A B C$, then, $\angle B O C=180^{\circ}-\hat{A}$. Since $O C$, perpendicular to $A B$ and $O B_{1}$ perpendicular to $A C$, then $\angle C_{1} O B_{1}=180^{\circ}-A=\angle B O C$. Repeat parts 2 and 3 of the proof of necessity and we get

$$
\angle \mathrm{C}_{1} \mathrm{~A}_{1} \mathrm{~B}_{1}=360^{\circ}-\left(\angle O C_{1} A_{1}+\angle O B_{1} A_{1}+\angle \mathrm{C}_{1} O B_{1}\right)=360^{\circ}-\left(\angle O B A_{1}+\angle O C A_{1}+\angle B O C\right)=360^{\circ}-180^{\circ}=180^{\circ} .
$$

So we get that points $\mathrm{C}_{1}, \mathrm{~A}_{1}, \mathrm{~B}_{1}$ lie on a line. This line call Simson $s$ line. And so, the theorem is proved.
Hence, this theorem is to be said the test of collinearity of points $A_{1}, B_{1}, C_{1}$ which are feet of perpendiculars drawn from the point to the sides of triangle $A B C$.

Let $O$ be an arbitrary point in the plane. We compute the leneths of sides of the pedal triangle (we don t care about singularity), or compute leneths of segments $A_{1} B_{1}, A_{i} G_{1}, B_{i} C_{1}$. Denote by $\delta_{A}, S_{B}, \delta_{C}$ the distances from the point $O$ to the vertices of triangle ABC.
$O A=S_{A}, O C_{1}=d_{c}, O B_{1}=d_{b}$ (seefig. 6 ).
Since in the quadrangle $\mathrm{AC}_{1} \mathrm{OB}_{1}$ angles $\angle A C_{1} O \& \angle O B_{1} A$ are right, then we can circumscribe a circle with diameter OA about this quadrangle. But then by the sine theorem for $B_{1} C_{1}$ which is the side of triangle $A C_{1} B_{1}$ and lying opposite to angle $A$ we get

$\frac{Q_{1} B_{1}}{\sin \hat{A}}=O \Rightarrow C_{1} B_{1}=\delta_{A} \cdot \sin \hat{A}, \hat{A}$ we can get from triangle $A B C \quad \frac{a}{\sin \hat{A}}=2 R$,
where $R$ is radii of the circle circumscribed about triangle $A B C$.
Thus, $C_{1} B_{1}=\frac{\delta_{A} \cdot a}{2 R}$. Similarly we obtain $A_{1} B_{1}=\frac{\delta_{C} \cdot c}{2 R}, A_{1} C_{1}=-\frac{\delta_{B} \cdot b}{2 R}$.

We fix an arbitrary point $O$ in the triangle $A B C$, then the pedal triangle $A_{1} B_{1} C_{1}$ is not singular and point $O$ lies inside of that triangle, since $\angle \mathrm{C}_{1} O A_{1}=180^{\circ}-\hat{B}, \quad \angle \mathrm{C}_{1} O \mathrm{~B}_{1}=180^{\circ}-\hat{A}, \quad \angle \mathrm{~A}_{1} O \mathrm{~B}_{1}=180^{\circ}-\mathrm{C}$, and it follows that $\angle \mathrm{C}_{1} O A_{1}+\angle \mathrm{C}_{1} O B_{1}+\angle \mathrm{A}_{1} O B_{1}=3 \cdot 180^{\circ}-180^{\circ}=360^{\circ}$.
(Prove the test by yourself. Point $O$ lies inside triangle if and only if every side seen by angle which smaller than $180^{\circ}$ and the sum of those angles is equal to $360^{\circ}$ ).
For triangle $A_{1} B_{1} C_{1}$ and point $O$ we create the new pedal triangle $A_{2} B_{2} C_{2}$ (the second pedal triangle) (see fig. 17 ).
As said above, point 0 lies inside triangle
$\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$. Finally, in the triangle $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$
we build the third pedal triangle $A_{3} B_{3} C_{3}$
as well not singular and with the $O$ inside its.
As it turn out, the third pedal triangle and given triangle are similar.


Described above procedure of constructing the first, second, third and so on pedal triangles is typical iteration. And for further we need to look well at behavior of angles by iterations. Sufficient to consider one step from the triangle $A B C$ to the triangle $A_{1} B_{1} C_{1}$.
Connect point $O$ with vertices $A, B$ \& $C$ (fige 18) then $\angle \mathrm{BAO}=\angle \mathrm{C}_{1} \mathrm{AO}=\angle \mathrm{C}_{1} \mathrm{~B}_{1} \mathrm{O}$ as long as
$\angle \mathrm{C}_{1} \mathrm{AO}$ \& $\angle \mathrm{C}_{1} \mathrm{~B}_{1} \mathrm{O}$ are inscribed and leaning on the same arc of the circle circumscribed about quadrangle $\mathrm{AC}_{1} \mathrm{OB}_{1}$ (since angles $\angle A C_{1} O \& \angle A B_{1} O$ are right). By the same reason

$$
\text { we get } \angle \mathrm{CAO}=\angle \mathrm{BAO}=\angle \mathrm{B}_{1} \mathrm{C}_{1} \mathrm{O}
$$

Bo, $\angle \mathrm{BAO}=\angle \mathrm{C}_{1} \mathrm{~B}_{1} \mathrm{O}$ \& $\angle \mathrm{CAO}=\angle \mathrm{B}_{1} \mathrm{C}_{1} \mathrm{O}$


Fig 18

Similarly, we get one more pair of equalities:

$$
\begin{array}{lll}
\angle C B O=\angle A_{1} O_{1} O & \& & \angle A B O=\angle O_{1} A_{1} O \\
\angle B C O=\angle A_{1} B_{1} O & \& & \angle A C O=\angle B_{1} A_{1} O
\end{array}
$$

Hence, by passage from the $n$-th pedal triangle to the $n+1$-th pedal triangle we obtain the follows equalities in the form of diagram:


We set. that triangles $A_{o} \mathrm{~B}_{\mathrm{g}}$ g and Atr ave equal.

Hence, increasing the indexes by every iteration by the diagram we get

$$
\begin{aligned}
& \angle B_{n} A_{n} O=\angle C_{n+1} B_{n+1} O=\angle A_{n+2} C_{n+2} O=\angle B_{n+3} A_{n+3} O \\
& \angle C_{n} A_{n} O=\angle B_{n+1} C_{n+1} O=\angle A_{n+2} B_{n+2} O=\angle C_{n+3} A_{n+3} O
\end{aligned}
$$

Addition the angles of the both of chains yields $\angle A_{n}=\angle A_{n+9}$.
Similarly, $\angle B_{n}=\angle B_{n+3} \& \angle C_{n}=\angle C_{n+3}$, i.e. triangles $A_{n} B_{n} C_{n}$ and $A_{n+3} B_{n+3} C_{n+3}$ are similar. In particular, $A_{3} B_{3} C_{3}$ and $A B C$ are similar.
Assume

$$
\angle \mathrm{BAO}=O^{\prime}, \angle \mathrm{CAO}=\alpha^{\prime}, \angle \mathrm{ACO}=\mathrm{y}^{\prime}, \angle \mathrm{BCO}=\gamma^{\prime}, \angle \mathrm{CBO}=\mathrm{F}^{\prime}, \angle \mathrm{ABO}=\beta^{\prime} .
$$

Revolise. Prove an analogy of the Cheve's theorem:
For the rays $I_{A}, I_{B}, l_{C}$ with the vertices of the respective vertices of triangle to be intersected at one point $O$ it is necessary and sufficient that

$$
\sin \alpha \cdot \sin \beta \cdot \sin \gamma=\sin \alpha \cdot \sin \beta \cdot \sin \gamma "
$$

where $\alpha, \alpha, \beta, \beta$, $\gamma, \gamma "$ are angles on which those rays divide the angles $\angle A, \angle B, \angle C$ of triangle, respectively.

Exeroise Prove that the ratio of similitude of triangles $A B C$ \& $A_{3} B_{3} C_{3}$ is equal to $\sin \alpha \cdot \sin \beta \cdot \sin \gamma$.
(Hint. Determine what s the connection between the distance from the point 0 to the vertices of two consequent pedal triangles).


## frobleve from craduate exams solutons.

PROBLEMS FROM GRADUATE EXAMS ON MATHEMATICS (FOR BAGRUT)

## EROBLEMS:

Part i. (10 points for every question. Solve 3 from 5 only).

1. Given right triangle $A B D$. Through $B$ drawn a circle intersecting hypotenuse at points $C$ and $E$ such that $B C$ is the diameter of circle. Express $E D$ through $A B$ and $B D$ if known that $A B=d \mathrm{CH}, \mathrm{BD}=\mathrm{acm}$.
2. a) Prove that $x^{2}-5 x+7$ positive for any real $x$.
b) Find all values of $x$ that following inequality holding true

$$
\left(x^{2}-5 x+7\right)^{x^{2}-8 x+6}>\left(x^{2}-5 x+7\right)^{1-2 x}
$$

3. Prove by mathematical induction method or by any other way that

$$
1 \cdot 2^{1}+2 \cdot 2^{2}+3 \cdot 2^{3}+4 \cdot 2^{4}+\ldots+(2 n+1) \cdot 2^{2 n+1}=2+n \cdot 2^{2 n+3}
$$

4. Given an infinite decreasing geometric progression in which all terms are positive. Denote by: $S_{n}$ the sum of $n$ first terms and $S$ the sum of all progression. ( $S-S_{n}$ ) is $n$-th term of new progression.
a) Prove that the new progression with general term ( $S-S_{n}$ ) also the infinite geometric progression.
b) Find the sum of the new progression if $S_{2}=216 \& g_{2}=243$.
5. We have to elect the municipality commission from 10 men and $\theta$ women. The commission is consist of chairman, his adviser and 3 members. They re agreed that chairmen and his adviser should be of different sex and three of members of the same sex. In how many different ways can the commission be elected ?

Part 2 ( 2 questions from 5).
6. Given that in isosceles trapezoid $A B C D$ ( $A D||\mid B C$ ) the smallest base is equal to the lateral side. The angle by the greatest base is equal to o. Through the vertex $D$ drawn a line intersecting $A B$ at the point $E$ and formed an angle $\beta$ with the base AD.
a) express the ratio of areas of triangles to area of trapezoid
b) prove that if given $\alpha=60^{\circ} \& \gamma=30^{\circ}$ then the ratio is equal to 2,3 .
7. Solve equation:
a) $\sin ^{2} 3 x-\sin ^{2} x=\sin x \cdot \cos x$
b) prove that in an acute triangle $\tan \alpha \cdot \tan \beta>1$.
8. Given cos $2 \alpha+\cos 2 \beta+\cos 2 \gamma=-1$ (a, $\beta \gamma$ are angles of a triangle).

Prove that this triangle is right.
9. The base of right prism is an equilateral triangle with the side a. The angle between diagonal of lateral face and another lateral face is equal to $a$. Express the volume of prism through a and $a$.
10. Given a line perpendicular to the two lines in the plane which are goine through the point of intersection line with the plane. Prove that this line perpendicular to any line going through that point.

Part 3. (2 questione from 3).
11. Gide $A B$ of triangle $A B C$ belongs to the line $y=2 x$, side $A C$ belongs to the line $y=-4 x+12$, the altitude dropped to the side $B C$ belongs to the line $y=x+2$. Given that $B C=\sqrt{32}$. Find coordinates of the triangle. (There are two wave of solution).
12. Equation of a circle is $x^{2}+y^{2}+6 x+5=0$. Find geometric location of all centres of circles which are going through point (3;0) and touching given circle.
13. Through the point $A\left(x_{1}, y_{1}\right)$ lying on the parabola $y^{2}=2 p x$ draw the tangent to the parabola. From the focus $F$ of the parabola drop perpendionlar to the tangent. Denote hy $\boldsymbol{y}$ the pant of intersection the perpendioular with Line $x-\frac{p}{2}$. Prove that the tangent bisect sepment Fo.
pant a. anestiong from 9 .
14. Given function $y=\frac{a \cdot e^{x}}{x+b}$ and known that $x=-2$ is asymptotio of this function. The tangent to this function at the point $x=0$ and positive direction of axis ox formed angle $45^{\circ}$.
a) Find $a$ and $b$.
b) Find points of intersection this function with axises.
c) Find domain of increasing and decreasing of function.
15. Had to set cable from electric power station $C$ which loosted at the river s bank to another river's bank at the point $A$ so that the part of the cable be situated under water and the rest of cable be situated along the the bank. Given

$$
\begin{aligned}
& |\mathrm{AB}|=100 \mathrm{~m} \\
& |\mathrm{CB}|=60 \mathrm{~m}
\end{aligned}
$$



Betting cable under water coast 130 nis. per meter and along the bank 50 nis. per meter. Find minimal expenses for cable setting.
16. Graphs of functions $y=x^{2} \& y=\sqrt{b^{3} x} \quad(b \geqslant 0)$ intersect at point $A$ and at the origin of coordinates. Prove that OA bisect the area between two graphs.

## SOLUTIONS:



Fig2


Fig. 3

Pay attention that is possible only $\frac{t w}{}{ }^{2}$ situation showr at those figures 2,3 since in the problem s condition nothing said about the looation of points $C$ and $F$ on the hypotenuse. However, it doesn $t$ influence on needed value of ED. Actually, in the both of cases connect $B$ with $E$. Then $\angle B E C=00^{\circ}$ as inscribed into circle and leaning on the diameter. But then BE is altitude dropped from the vertex $B$ to hypotenuse, therefore, needed segment is the projection of leg $B D$ on hypotenuseAD,Trianeles BED \& ABD are similar. Then, $\frac{E D}{D B}=\frac{B D}{A D}$. Hence, $\quad \mathrm{DD}=\frac{B D^{2}}{A D}=\frac{a^{2}}{\sqrt{a^{2}+d^{2}}} \mathrm{sm}$.
2. a) $x^{2}-5 x+7=\left(x-\frac{5}{2}\right)^{2}+7-\frac{25}{4}=\left(x-\frac{5}{2}\right)^{2}+\frac{3}{4} \geq \frac{3}{4} 0$
b) $\left(x^{2}-5 x+7\right)^{x^{2}-8 x+0}>\left(x^{2}-5 x+7\right)^{1-2 x} \Leftrightarrow$
$\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}x^{2}-5 x+7<1 \\ x^{2}-8 x+6<1-2 x \\ x^{2}-5 x+7>1 \\ x^{2}-8 x+6>1-2 x\end{array}\right. \\ \left\{\begin{array}{l}x^{2}-5 x+6<0 \\ x^{2}-6 x+5<0 \\ x^{2}-6 x+5>0\end{array}\right. \\ x^{2}-5 x+6>0 \\ {\left[\begin{array}{l}x>2 \\ x<3\end{array}\right.}\end{array} \Leftrightarrow\left\{\begin{array}{l}2<x<3 \\ 1<x<5 \\ {\left[\begin{array}{l}x<2\end{array}\right.}\end{array} \Leftrightarrow\left[\begin{array}{l}2<x<3 \\ x<5 \\ x\end{array}\right.\right.\right.$
$\Leftrightarrow\left[\begin{array}{l}x<1 \\ 2<x<3 \\ 5<x\end{array} \Leftrightarrow x=(-\infty, 1) \cup(2,3) \cup(5, \infty)\right.$
Remark: $x^{2}-5 x+6=(x-2) \cdot(x-3) ; x^{2}-6 x+5=(x-1) \cdot(x-5)$


$$
\left\{\begin{array}{l}
2<x<3 \\
1<x<5
\end{array}\right.
$$

Fig. 4

$\left\{\begin{array}{l}{\left[\begin{array}{l}x<2 \\ x>3\end{array}\right.} \\ {\left[\begin{array}{l}x<1 \\ x>5\end{array}\right.}\end{array}\right.$
Fies 5
3. i-st way - Matematical complete induction method:

1. Base.
$\mathrm{n}=1$. We have $1 \cdot 2^{1}+2 \cdot 2^{2}+3 \cdot 2^{3}=2+8+24=34$.
From other hand, $2+1 \cdot 2^{2+3}=2+2^{5}=34$.
2. Induction's step $n \rightarrow n+1$ :

$$
\begin{aligned}
& 1 \cdot 2^{1}+2 \cdot 2^{2}+\ldots+(2 n+1) \cdot 2^{2 n+1}+(2 n+2) \cdot 2^{2 n+2}+(2 n+3) \cdot 2^{2 n+3}= \\
= & 2+n \cdot 2^{2 n+3}+(2 n+2) \cdot 2^{2 n+2}+(2 n+3) \cdot 2^{2 n+3}=2+n \cdot 2^{2 n+3}+(n+1) \cdot 2^{2 n+3}+(2 n+3) \cdot 2^{2 n+3}
\end{aligned}
$$

$=2+2^{2 n+3} \cdot(n+n+1+2 n+3)=2+(4 n+4) \cdot 2^{2 n+3}=2+(n+1) \cdot 2^{2 n+5}=$
$=2+(n+1)^{2(n+1+3}$, what was needed to prove.

## 2-nd way.

Consider sum

$$
g_{n}\left(x^{\prime}\right)=1+x+x^{2}+\ldots+x^{2 n+1} \sin _{n}(x)=\frac{x^{2 n+2}-1}{x-1}
$$

Then its derivative $\operatorname{mof}^{\prime}(x)$ from one hand, is equal to $1+2 x+2+2+1$ From other hand, $S_{n}^{\prime}(x)=\frac{(2 n+2) \cdot x^{2 n+1} \cdot(x-1)-\left(x^{2 n+2}-1\right)}{(x-1)^{2}}=$
$=\frac{(2 n+1) \cdot x^{2 n+2}-(2 n+2) \cdot x^{2 n+1}+1}{(x-1)^{2}} \Rightarrow S_{n}^{1}(2)=\frac{(2 n+1) \cdot 2^{2 n+2}-(2 n+2) \cdot 2^{2 n+1}+1}{(2-1)^{2}}=n \cdot 2^{2 n+2}+1$

$$
S_{n}(2)=2 \cdot S_{n}^{\prime}(2)=1 \cdot 2^{\prime}+2 \cdot 2^{2}+3 \cdot 2^{3}+\cdots+(2 n+1) \cdot 2^{2 n+1}=n \cdot 2^{2 n+3}+2
$$

4. $S_{n}=a_{1}+a_{2}+\ldots+a_{n} \quad a_{n}=a_{1} \cdot q^{n-1} \cdot \Gamma$ Ie $|q|<1$.


Actually, $\quad G-g_{n}=\frac{a_{1}}{1-q}-\frac{a_{1} \cdot\left(1-q^{n+1}\right)}{1-q}=\frac{a_{1}}{1-q} \cdot q^{n+1}=\frac{a_{1} \cdot q^{2}}{q-1} \cdot q^{n-1}$

It means that sequence $s-S_{1}, S-S_{2}, \ldots, \sin , \quad$, is infinite decreasing geometric progression with common ratio g and the first term $\frac{a_{1} q^{2}}{1-g}$.
b) $t$ ts sum is equal to $\frac{a_{1} q^{2}}{1-q} \cdot \frac{1}{1-q}=\frac{q^{2}}{1-q} \cdot \frac{1}{1-q}=\frac{q^{2}}{1-q} \cdot a^{2}$
since $s_{2}=216$ \& $s=243$ we have system:

It follows that problem s condition holding true by two seometrio progression with ratios 1,3 and -1 , respectively. And therefore, we obtain two answers: the sum of infinite decreasing geometvic progression $S-S_{1}, S-S_{2}, \ldots, S-S_{n}, \ldots$ can be equal to
$\frac{19}{1-1.3} \cdot 243=\frac{243}{6}=\frac{81}{2}$ in the $\operatorname{cose}$ of $9=1 / 3$ and then a $=162 . \quad$ or

5. All possible staffs of commission are represented by following cases:

1. Chairman is man, adviser is woman and rest of members are women, i.e. 1 man and 4 women.
2. Chairman is woman, adviser is man and rest of members are women, i.e. 1 man and 4 women.
3. Chairman is man, adviser is woman and rest of members are men, i.e. 4 men and 1 woman.
4. Chairman is woman, adviser is man and rest of members are men, i.e. 4 men and 1 woman.
All of those cases can be divided by 2 groups:
Commission of 1-st type - one woman and 4 men.
Commission of 2 -nd type - one man and 4 women.
Commission are distinct by the set of men from municipality and by the chairman of commission. For example, from the set $\left\{w, m_{1}, m_{2}, m_{3}, m_{4}\right\}$ we can choose groups electing on the post chairman one of the four men -
$\left\{w, m_{1}\right\},\left\{w, m_{2}\right\},\left\{w, m_{3}\right\},\left\{w, m_{4}\right\}$. Actually, it $s$ very important to know who s chairman and who's adviser in the administration pair. Hence, from the one set of men we can make 8 different commission. Since 4 men from 10 we can chose by $\binom{10}{4}$ ways and such set we can add one woman by 6 ways. Finally, the number of sets of the 1 -st type is $6 \cdot\binom{10}{10}$ and number of omissions is 8.6.( $\left.\begin{array}{c}10 \\ 4\end{array}\right)$ So, the number of possible election of commissions is

$$
8 \cdot\left(6 \cdot\binom{10}{4}+10 \cdot\binom{10}{4}\right)=\frac{8 \cdot 6 \cdot 10 \cdot 9 \cdot 8 \cdot 7}{4}+\frac{8 \cdot 10 \cdot 6 \cdot 5}{1 \cdot 2}=20 \cdot 9 \cdot 56+8 \cdot 25 \cdot 6=12080
$$

(Similarly, number of commissions of the 2 -ad type is $8 \cdot 10 \cdot\binom{6}{4}$ ).


Denote the length of $\mathrm{BC}(f i g \cdot \sigma$ ) by a. Then
$A B=B C=C D=a$. Drop from the vertex $B \& C$ on side $A D$ perpendiculars $B K \& C M$. Then $K M=B C$ as opposite sides in rectangle and $A K=M D$ as projection onto $A D$ equals and with same angle to $A D$. Therefore,
$A D=B C+2 \cdot A K=a+2 \cdot a \cdot \cos \alpha$. Hence,
$\mathrm{BC}+\mathrm{AD}=2 \mathrm{a} \cdot(1+\cos \alpha) \& \mathrm{BK}=\mathrm{a} \cdot \sin \alpha \Rightarrow \operatorname{s}_{\mathrm{ABCD}}=\frac{\mathrm{BC}+\mathrm{AD}}{2} \cdot \mathrm{BK}=$ $=\frac{2 a^{2} \cdot(1+\cos \alpha) \cdot \sin \alpha}{2}=a^{2} \cdot(1+\cos \alpha) \cdot \sin \alpha$.
For determination the area of triangle $A B D$ we use the formula for the area of triangle through two angles and side lying by them $S_{A E D}=\frac{A E E D}{2}$ Sin $\angle A E D$ $S_{A E D}=\frac{A E \cdot E D \cdot \sin (\alpha+\beta)}{2}$. But by the sine theorem: $\frac{A E}{\sin \beta}=\frac{D E}{\sin \alpha}=\frac{A D}{\sin (\alpha+\beta)}$
Thus, $A E=\frac{A D \cdot \sin \beta}{\sin (\alpha+\beta)} \& D E=\frac{A D \cdot \sin \alpha}{\sin (\alpha+\beta)}$ and it follows $s_{A E D}=\frac{A D}{} \sin ^{2} \alpha \cdot \sin \beta$
Since $A D=a+2 a \cdot \cos \alpha$, we get $\frac{S_{A E D}}{S_{A B C D}}=\frac{a^{2}(1+2 \cos \alpha)^{2} \cdot \sin \alpha \cdot \sin \beta}{2 \cdot \sin (\alpha+\beta) \cdot a^{2} \cdot(1+\cos \alpha) \cdot \sin \alpha}=$

$$
=\frac{(1+\cos \alpha)^{2} \cdot \sin \beta}{2 \cdot \sin (\alpha+\beta) \cdot(1+\cos \alpha)}
$$

b) Let $\alpha=60^{\circ} \& \beta=30^{\circ}$, then $\frac{S_{\mathrm{AED}}}{S_{\mathrm{ABCD}}}=\frac{\left(1+2 \cos 60^{\circ}\right)^{2} \cdot \sin 30^{\circ}}{2 \cdot \sin 90^{\circ} \cdot\left(1+\cos 60^{\circ}\right)}=\frac{2}{3}$.
7. a) $\sin ^{2} 3 x-\sin ^{2} x=\sin x \cdot \cos x \Leftrightarrow(\sin 3 x-\sin x) \cdot(\sin 3 x+\sin x)=$ $\sin x \cdot \cos x \Leftrightarrow 2 \cdot \cos 2 x \cdot \sin x \cdot 2 \cdot \sin 2 x \cdot \cos x=\sin x \cdot \cos x \Leftrightarrow$ $2 \cdot \sin 4 x \cdot \sin 2 x=\sin 2 x \Leftrightarrow \sin 2 x \cdot(2 \cdot \sin 4 x-1)=0 \Leftrightarrow$
$\Leftrightarrow\left[\begin{array}{l}\sin 2 x=0 \\ \sin 4 x=1 / 2\end{array} \Leftrightarrow\left[\begin{array}{l}2 x=k \cdot \pi \\ 4 x=(-1)^{n} \cdot \frac{\pi}{\sigma}+n \cdot \pi\end{array} \Leftrightarrow\left[\begin{array}{l}x=\frac{k \cdot \pi}{x^{2}}, n \cdot \frac{n}{24}+\frac{n \pi}{4}, n \in \mathbb{Z} \\ x=\left(\begin{array}{l}n\end{array}\right]\end{array}\right.\right.\right.$
b) We have $\alpha+\beta+\gamma=\pi \quad \& \quad 0<\alpha, \beta, \gamma<\frac{\pi}{2}$. Moreover, $\alpha+\beta \neq \frac{\pi}{2}$ otherwise $\gamma=\frac{\pi}{2}$.

Then, $\tan (\alpha+\beta)=\tan (\pi-\gamma)=-\tan \gamma$. From other hand:
$\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \cdot \tan \beta}$. Отсода, $-\tan \gamma=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \cdot \tan \beta} \Leftrightarrow$
$\Leftrightarrow 1-\tan \alpha \cdot \tan \beta=-\frac{\tan \alpha+\tan \beta}{\tan \gamma}$. Since $\tan \alpha, \tan \beta, \tan \gamma>0$, then finally we get $\tan \alpha \cdot \tan \beta-1>0 \Leftrightarrow \tan \alpha \cdot \tan \beta>1$.
8. Transform expression cos $2 \alpha+\cos 2 \beta+\cos 2 \gamma+1$ which is equal to 0 . We have $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma+1=2 \cos (\alpha+\beta) \cdot \cos (\alpha-\beta)+2 \cos ^{2} \gamma-1+1=$

$$
\begin{aligned}
& =2 \cdot \cos (\pi-\gamma) \cdot \cos (\alpha-\beta)+2 \cdot \cos ^{2} \gamma=2 \cdot \cos \gamma \cdot(\cos \gamma-\cos (\alpha-\beta))= \\
& =4 \cdot \cos \gamma \cdot \sin \frac{\gamma+\alpha-\beta}{2} \cdot \sin \frac{\alpha-\beta-\gamma}{2} .
\end{aligned}
$$

But $a+\beta+\gamma=n$, therefore $\frac{\gamma+\alpha-\beta}{2}=\frac{\pi-2 \beta}{2} \& \frac{\alpha-\beta-\gamma}{2}=\frac{2 \alpha-\pi}{2}$. Hence, $0=1+\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=-4 \cdot \cos \alpha \cdot \cos \beta \cdot \cos \gamma$. Thus, either cos $\alpha=0$ or $\cos \beta=0$ or $\cos \gamma-0$, i.e. one of three angles $\alpha, \beta, \gamma$ must be equal to $\pi$, , since $0<\alpha, \beta, \gamma<\pi$.

We could solve the problem otherwise, by formula:

$$
\cos \alpha+\cos \beta+\cos \gamma+\cos (\alpha+\beta+\gamma)=4 \cdot \cos \frac{\alpha+\beta}{2} \cdot \cos \frac{\alpha+\gamma}{2} \cdot \cos \frac{\beta+\gamma}{2},
$$

```
cos}\alpha+\operatorname{cos}\beta+\operatorname{cos}\gamma+\operatorname{cos}(\alpha+\beta+\gamma)
```

$=(\cos \alpha+\cos \beta)+(\cos \gamma+\cos (\alpha+\beta+\gamma))=2 \cdot \cos \frac{\alpha+\beta}{2} \cdot \cos \frac{\alpha+\gamma}{2}+2 \cdot \cos \left(\gamma+\frac{\alpha+\beta}{2}\right) \cdot$ $\left.\cos \frac{\alpha+\beta}{2}=2 \cdot \cos \frac{\alpha+\beta}{2} \cdot\left(\cos \frac{\alpha-\beta}{2}+\cos \left(\gamma+\frac{\alpha+\beta}{2}\right)\right)=4 \cdot \cos \frac{\alpha+\beta}{2} \cdot \cos \frac{\alpha+\gamma}{2} \cdot \cos \frac{\beta+\gamma}{2}\right)$

By the way, we can get similarly formula for sines:
$\sin \alpha+\sin \beta+\sin \gamma-\sin (\alpha+\beta+\gamma)=4 \cdot \sin \frac{\alpha+\beta}{2} \cdot \sin \frac{\alpha+\gamma}{2} \cdot \sin \frac{\beta+\gamma}{2}$.
Those formulas can be useful in the problems about angles of triangle like we have now. Actually, since $\alpha+\beta+\gamma=\pi$
$\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma+1=\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma+\cos (2 \alpha+2 \beta+2 \gamma)=4 \cos \alpha \cdot \cos \beta \cdot \cos \gamma$
9. $A B=$ a. Since angle between a line and the plane by definition is the angle between the line and its projection onto the plane. We have to drop projection of djagonal of lateral face onto another lateral face (see fig. 7). We take diagonal $A C_{i}$ and project it onto face $\mathrm{CBB}_{1} \mathrm{C}_{1}$. (Choice of latexal face is not unique. however since we have a right prism and in the base lying equilateral triangle, then all pairs of diagonal and lateral face are equal accurate to


Fig. 7 the location in the space by geometric sense).
Since the prism is right then the perpendicular dropped from the point $A$ on the plane $C B B_{1} C_{1}$ is entirely lie in plane $A B C$ which is perpendicular to $\mathrm{CBB}_{1} \mathrm{C}_{1}$. Moreover, point K of intersection of this ${ }^{1}$ perpendicular with plane $\mathrm{CBB}_{1} \mathrm{C}_{1}$ simultaneously belongs to the planes $A B C \& C B B_{1} C_{1}$, i.e. point lies on the line CB of intersection those planes, and it means $K$ is a feet of altitude drawn from the vertex $A$ on side $B C$ of triangle $A B C$, i.e. midpoint of this side (since triangle $A B C$ is equilateral). $\angle A C_{1} K=a$ by problem condition. Now we can compute the volume:
$V_{\mathrm{PTIZ}}=S_{\mathrm{ABC}} \cdot \mathrm{CC}_{1} \cdot \quad S_{\mathrm{ABC}}=\frac{\mathrm{a}^{2} \cdot \sin 60^{\circ}}{2}=\frac{a^{2} \cdot \sqrt{3}}{4}, \frac{A K}{\mathrm{C}_{1} K}=\tan \alpha \& A K=\frac{a \sqrt{3}}{2}$. Hence, $C_{1} K=\frac{a \sqrt{3}}{2} \cdot \cot a$. But since $C K=\frac{a}{2}$, then $C_{1}=\sqrt{C_{1} K^{2}-C K^{2}}=$
$=\sqrt{\frac{3 a^{2}}{4} \cdot \cot ^{2} \alpha-\frac{a^{2}}{4}}=\frac{a}{\sin \alpha} \cdot \sqrt{\left(\frac{\sqrt{3}}{2} \cdot \cos \alpha-\frac{1}{2} \cdot \sin \alpha\right) \cdot\left(\frac{\sqrt{3}}{2} \cdot \cos \alpha+\frac{1}{2} \cdot \sin \alpha\right)}=$
$=\frac{a}{\sin \alpha} \cdot \sqrt{\sin \left(\frac{\pi}{3}-\alpha\right) \cdot \sin \left(\frac{\pi}{3}+\alpha\right)} \cdot\left(\right.$ Remank $\quad C_{1} \mathrm{~K}>\mathrm{CK} \Leftrightarrow \frac{a \sqrt{3}}{2} \cot \alpha>\frac{a}{2}$
$\Leftrightarrow \cot \alpha>\frac{1}{\sqrt{3}} \Leftrightarrow \alpha<\frac{r}{3}$, Thus, we obtain the volume of prism
$V=\frac{a^{2} \sqrt{3}}{4} \cdot \frac{a}{\sin \alpha} \cdot \sqrt{\sin \left(\frac{\pi}{3}-\alpha\right) \cdot \sin \left(\frac{\pi}{3}-\alpha\right)}=\frac{a^{3}}{4 \sin \alpha} \cdot \sqrt{3 \cdot \sin \left(\frac{\pi}{3}-\alpha\right) \cdot \sin \left(\frac{\pi}{3}+\alpha\right)}$
10. Denote by
$a, b$ two lines intersection at point 0 , $c$ an arbitrary line in the plane $\pi$,
1 line perpendicular to lines $a$ \& $b$, and going through point 0 . (fig 8).
Denote by $\bar{a}, \bar{b}, \bar{c}, \bar{l}$ are direction vectors of respective lines.
Then by condition, the inner (scalar) product $\bar{l}, \bar{a})=0 \& \overline{\overline{1}}, \bar{b})=0$. Since $\bar{a} \& \bar{b}$ by condition

are not collinear, then for $\bar{c}$ there exist real $k$ and $m$ such that
$c=k \cdot \bar{a}+m \cdot \bar{b}$. Hence, $(I, c)=\overline{(I}, k \cdot \bar{a}+m \cdot \bar{b})=\overline{(I}, k \cdot a)+\overline{(I}, m \cdot \bar{b})=$
$=k \cdot \overline{(I}, \bar{a})+m \cdot \bar{I}, \bar{b})=0$, i.e. Iines $I$ \& $c$ are perpendicular.
It's possible a geometric proof.
Take on 0 an arbitrary point distinct from 0 , denote its by $D$ (fig. 9 ). Then through $D$ we can draw segment with the ends on lines $a \& b$ which bisect by point $D$. Con the line taken point $D_{1}$ symmetric to $O$ relatively $D$ and draw $D_{1} A \| b$ \& $D_{1} B \| a$, then $O A D_{1} B$ is parallelogram $A B$ its diagonal and bisect by point $D$ ).
Take on 1 two mutually symmetric pointo $\mathrm{F} \& \mathrm{I}_{1}$ relatively $O$. Conect them with points $A, R \& B$. Then by equality of triangle OLA and OL $A$
 wo get, Rmilarly, $L B=L_{1} B$. Then triangles $L A B$ \& $L_{i} A B$ are equal by three sides.And therefore medians LD and $L_{2} D$ are equal.
From equality of triangle OLD $\& L_{1} D$ follows equality of angles $\angle D O L=\angle D O L$, therefore, 1 perpendicular to $d$.
11. Determine coordinates of vertex A (fig. 10).
$\left\{\begin{array}{l}y=-4 x+12 \\ y=2 x\end{array} \Leftrightarrow\left\{\begin{array}{l}y=2 x \\ 6 x=12\end{array} \Leftrightarrow\left\{\begin{array}{l}x=2 \\ y=4 .\end{array}\right.\right.\right.$
Point $A$ lies on line $y=x+2$ and we can use for control of derived coordinates of the point $A$. Eo, $A(2,4)$. Side $B C$ lies on line directed vector which is normal vector for line $\mathrm{y}=\mathrm{x}+2 \Leftrightarrow \quad \mathrm{x}-\mathrm{y}+2=0$
So, direction vector of line $B C$ is equal to e $(1,-1)$. Hence, if we denote coordinates


Fis 10 (sohematio, but sufficiently concordant with given data). $B\left(x_{1}, y_{1}\right) \& C\left(x_{2}, y_{2}\right)$, then $\left.\overline{B C\left(x_{2}\right.}-x_{1}, y_{2}-y_{1}\right)$ collinear $e$, i.e. there exist $t \cong \mathbb{R}$ such that $x_{2}-x_{1}=t ; y_{2}-y_{1}=-t$.

Since $|B C|=\sqrt{32}$, hence $B C^{2}=32=\left(x_{2}-x_{1}\right)^{2}+\left(y_{z}-y_{1}\right)^{2}=2 t^{2} \Leftrightarrow t^{2}=16 \leftrightarrow\left[\begin{array}{l}t=4 \\ t=-4\end{array}\right.$
From other hand $B\left(x_{1}, y_{1}\right)$ lies on $y=2 x_{n}$, hence $y_{1}=2 x_{1}$ and $\underbrace{C\left(x_{2}\right.}_{\text {becouse }}, y_{z})$ lies
on $y=-4 x+12$, thus, $y_{2}=-4 x_{2}+12$. Now convenient to express coordinates through $t$ and get final values by substituting in derived expressions the values of $t$ We have $y_{2}=y_{1}-t=2 x_{1}-t, x_{2}=x_{1}+t$. Substitution $x_{2} \& y_{z}$ into $y_{z}=-4 x_{2}+12$, yields

$$
\begin{aligned}
& 2 x_{1}-t=-4 x_{1}-4 t+12 \Leftrightarrow 6 x_{1}=-3 t+12 \Leftrightarrow 2 x_{1}=-t+4 . \text { Hence, }\left\{\begin{array}{r}
x_{1}=\frac{4-t}{2} \\
y_{1}=4-t
\end{array}\right. \text { and } \\
& \left\{\begin{array}{l}
x_{2}=x_{1}+t=\frac{4-t}{2}+t=\frac{4+t}{2} \\
y_{2}=2 x_{1}-t=4-t-t=4-2 t .
\end{array} \quad \text { Thus, when } t=4 \quad B(0,0) ; C(4,-4)\right.
\end{aligned}
$$

12. $x^{2}+y^{2}+6 x+5=0 \Leftrightarrow(x+3)^{2}+y^{2}=4$.
$R=2, A(-3,0) ; B(3,0) . A B=6>2=R$,
therefore, foint $B$ lies outside given aircle.
Let $A\left(x_{1}, y_{1}\right)$ be centre of given circle, $R$ its radii, $B\left(x_{z}, y_{z}\right)$ given point.
Let $P(x, y)$ be the centre of circle which touch given circle at the point $K$ and goine through given point B. lie on line connecting the centres of those circles. Possible two cases of mutually location
 of circles (see fig. 11,ie).
Outside touch (fig.11), then $A K+K P=A P$
$\Leftrightarrow \mathrm{AK}=\mathrm{AP}-\mathrm{BF} \Leftrightarrow \mathrm{R}=\mathrm{PA}-\mathrm{PB}$, and inside touch
(fig. 1ᄅ), then $P A=P K-A K ~ \Longleftrightarrow$
$\Leftrightarrow \mathrm{K}=\mathrm{PB}-\mathrm{PA}$. By union those cases we get:
$R=|P A-P B|$. Therefore, point $P$ belongs to the set of points such that absolute value of difference of the distance from each of them to the two given points is a constant value $R$. It means that $p$ belongs to hyperbola with focuses at the points $A$ \& $B$.


From other hand, let point $P$ be lying on hyperbola with focuses at points $A$ \& $B$ and $|P A-P B|=R$, then if we draw a circle with centre at point $P$ and radius PB , then either $\mathrm{PA}=\mathrm{PB}+\mathrm{R}$ or $\mathrm{PA}=\mathrm{PB}-\mathrm{R}$. Connect centers P \& A . If $P A=P B+R$, then by taking on $P A$ point $K$ on distance $R$ from $A$ we get that $K$ lies on constructed circle and $P A=A K+K B$ that's possible only in the case of touching. If $P A=P B-R$, then on continuation $P A$ in the direction from $P$ to $A$ by length $R$ we get point $K$ for which $A K=R$, i.e. $K$ lies on given circle and $P K=P A+A K=P A+R=P B-R+R=P B$. And it means that $K$ lies on the constructed circle and on the line connecting centres of the both circles that $s$ possible only

DERP A THE SUCOL
in the case of touching. So, we ve proved that needed geometrio location of all centres is hyperbola. Now we can write its equation. The focuses of
hyperbola $A \& B$ are situated by problem s condition and symmetric relatively origin of coordinates X-axis (fig. 3 ).
Equation of the hyperbola in this case is
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, where $2 a=R(\Leftrightarrow a=1) \& b=\sqrt{a^{2}-a^{2}}$
But $a=3$. Hence, $b=\sqrt{9-1}$ and equation can be written $\quad \frac{x^{2}}{1}-\frac{y^{2}}{8}=1$.


Verify: $\quad 2=|P A-P B|, y^{2}=8\left(x^{2}-1\right)$.
$P A^{2}=(x+3)^{2}+y^{2}=(x+3)^{2}+8 \cdot\left(x^{2}-1\right)=9 x^{2}+6 x+1=(3 x+1)^{2}$
$P B^{2}=(x-3)^{2}+y^{2}=(3 x-1)^{2}$.
Hence, $|P A-P B|=||3 x+1|-|3 x-1||$, and $|x|=1$. But then if $x-1$, then $|3 x+1|-|3 x-1|=3 x+1-3 x-1=2$. If $x<-1$, then $|3 x+1|=-3 x-1 \&|3 x-1|=1-3 x$ and then $|3 x+1|-|3 x-1|=-2$.
13. Line $x=-\frac{P}{2}$ is direotrix of parabola

So. let $G$ be a point of intersection of perpendicular of the tangent to parabola at $A\left(x_{1}, y_{1}\right)$ (fig. i4). Equation of the tangent to parabola $y^{2}=2 p x$ at point $A\left(x_{1}=y_{1}\right)$ is $\quad y y_{1}=p \cdot\left(x+x_{1}\right)$ or $p x-y y_{1}+p x_{1}=0$. Hence, ec $p,-y_{1}$ is
normal veotor of the tangent and it follows that it's direction vector of a line perpendicular to the tangent.


Fig. 1 全

Fquation of perpendicular to the tangent can be written in parametrio form since normal vector of taneent ( $p,-y_{i}$ ) is a direption vector for perpendjoular to the tangent dropped from point $F C$ pr 2,0 . We have:

$$
\left\{\begin{array}{l}
x=\frac{p}{2}+p t \\
y=-y, t, \text { ter }
\end{array} \quad \text {. Find coordinates of the point } G \text { if given that } G\right. \text { lies }
$$

on directrix and on the perpendicular to the tangent. We get
$-\frac{p}{2}=\frac{P}{2}+p t \Leftrightarrow t=-1 \&\left\{\begin{array}{l}x=-\frac{p}{2} \\ y=y_{1}\end{array}\right.$, i.e. point $G$ lies on a line drawn
through $A$ and parallel to axis OX. Let $K$ be a midpoint of segment $F G$, then its coordinates
$\frac{-\frac{p}{2}+\frac{p}{2}}{2}=0 \& \frac{y_{1}+0}{2}=\frac{y_{1}}{2}$, or $k\left(0, \frac{y_{1}}{2}\right.$, Show thet this point lues on
the tangent and on perpendicular to it dropped from $F$

Actually, $K$ lies on the tangent, $\frac{\text { because }}{y_{i}} \cdot \frac{y_{1}}{2}=P\left(O+x_{1}\right) \Leftrightarrow y_{i}{ }^{2}=2 \operatorname{pox}_{1}$
From the other hand, in equation of perpendicular $t=-12$ we get the coordinates of point $K$. What's needed to prove. It's possible another solution by property of parabola's focus.
The lineldrawn through point $A$ of parabola is parallel to axis $O X$ and formed with tangent of parabola at point. $A$ the same angle as a line drawn from the focus $F$ in point of touching. (Fig. 15) Let point $G$ be the point of intersection
 \& with directrix. Base property of a parabola (determining) - the distance from the focus to the point on a parabola is equal to the distance from this point to direotix, ie. $A G=A F$ Therefore, triangle GAF is isosceles. Since angle $\angle \mathrm{GAP}=\alpha$, then the tangent is the bisector of angle $\angle G A F$. Let $K$ be point of intersection tangent with GF. Since bisector in an isosceles triangle is median and simultaneously altitude, then $F G$ is perpendicular to the tangent and bisecting by tangent.
14. Since $x=-\bar{c}$ is asymptotic to the graph of function $y=\frac{a e^{x}}{x+b}$, then $b=2$. Actually, if $a^{* 0}$, then $x=-b$ is vertical asymptotic. If $a=0$, then
function is equal to zero on domain of definition and function has no vertical asymptotic. Since given that $x=-2$ is a vertical asymptotic, then $b=2$.

Determine a by using second condition
$f(x)=\frac{a e^{*}}{x+2}, f^{\prime}(x)=a \cdot \frac{e^{x}(x+2)-e^{x}}{(x+2)^{2}}=\frac{a e^{x} \cdot(x+1)}{(x+2)^{2}} \Rightarrow f^{\prime}(0)=\frac{a}{4}=\tan 45^{\circ}=1 \Rightarrow$ $a=4 \Rightarrow y=\frac{4 e^{x}}{x+2}$
b) Axis $O X$ and the graph of function (fig. 10)
have no points of intersection, i.e. $y=0 \Leftrightarrow e^{*}=0$ that's impossible. Axis OY and graph has points of intersection, since when $x=0$ we get $y=2$. So, point $K(0,2)$ is the point of intersection graph with axis OY.
c) $f^{\prime}(x)=\frac{4 e^{x}(x+1)}{(x+2)^{2}} \quad f^{\prime}(x)>0 \Leftrightarrow x>-1$.

So, $f(x)$ is monotone increasing on $(-1, \infty)$ and monotone decreasing on each of intervals $(-2,-1) \&(-\infty,-2)$. Axis ox is horizontal

15. The price of work depend from the location of point $p$ (see fig 17). Set $\mathrm{BP}-\mathrm{x}$. Then the location of $P$ determinate by $x \in[0,100]$ and this location is unique. The price of work can be written

$$
\left.|C P| \cdot 130+|P A| \cdot 50=10 \cdot(100-x) \cdot 5+13 \cdot \sqrt{60^{2}+x^{2}}\right)
$$

Convenient to introduce new variable t, such that $x=10$. then the price of work is $100((10-t) \cdot 5+13 \cdot \sqrt{36+t})=100(13 \cdot \sqrt{36+t}-6 t+50)$.
 value telg, iol which minimize fumotion f(t)=13•13ot2-bt.
$\left\{\begin{array}{l}t^{\prime}(t)=\frac{13 t}{\sqrt{3 c+t}}-5=0 \\ t \in[0,10]\end{array} \Leftrightarrow\left\{\begin{array}{l}13 \cdot t=5 \cdot \sqrt{30+t} \\ t \in[0,10]\end{array} \Leftrightarrow\left\{\begin{array}{l}169 t^{2}=35 \cdot 36+25 t^{2} \\ t \in[0,10]\end{array} \Leftrightarrow\left\{\begin{array}{l}144 t^{2}=900 \\ t \in[0,10]\end{array}\right.\right.\right.\right.$
$\Leftrightarrow t=\frac{5}{2} \cdot$ So, $t=52$ is critical point. $\left.\min f(t)=\min f(0), f(10), f\left(\frac{5}{2}\right)\right\}$
$f(0)=13 \cdot 6=70 ; f(10)=13 \cdot \sqrt{130}-50 ; \quad f(5 / 2)=13 \cdot \sqrt{36+\frac{25}{4}-\frac{25}{2}=\frac{105}{2}-\frac{25}{2}=72 .}$
$f(10)>72 \Leftrightarrow 13 \cdot \sqrt{130}>122$. Hence, $\min \{f(0), f(10), f(5 / 2)\}=72=f(5 / 2)$.
It means that the price of work can be minimal when point $p$ situated on the distance $x=10 \cdot 5,2=25 \mathrm{~m}$. from the point $B$. In this case the price is equal t.o $100 \cdot(72+50)=12200$ nis.
16. $\left\{\begin{array}{l}y=x^{2} \\ y=\sqrt{6}^{3} x\end{array} \Leftrightarrow\left\{\begin{array}{l}y=x^{2} \\ x^{4}=b^{3} x\end{array} \Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}x=0 \\ y=0\end{array}\right. \\ \left\{\begin{array}{l}x=b \\ y=b^{2}\end{array}\right.\end{array}\right.\right.\right.$

Compute the area of whole noted figure. (see fig 1s).
$S=\int_{0}^{b}\left(\sqrt{b^{3}} x-x^{2}\right) d x=\left.\left(\sqrt{b^{3}} \cdot \frac{2}{3}-\frac{x}{3}\right)^{3}\right|_{0} ^{b}=\frac{b^{3}}{3}$


Fig. 18

The area of triangle OBA easily determine $S_{o b A}=\frac{b^{3}}{2}$. The area of curvilinear trapezoid bounded by graph $y=x^{2}$ is equal to $\int_{x^{2}}^{8} d x=\frac{b^{3}}{3}$. Thus, the area of 0 noted figure situated under segment oA je equal to $\frac{b^{3}}{2}-\frac{b^{3}}{3}=\frac{b^{3}}{6}$.

[^0]

## Problems fox school：

ショー th form：
1．Solve inequality


2．Prove that for any $x, y, z=0$ ：min $\left\{1, x^{3}, y^{4}, z^{5}, x y z\right.$ ．
F．Prove inequality

$$
\frac{\log _{3} 4 \cdot \log _{3} 6 \cdot \cdots \cdot \log _{3} 80}{\log _{3} 9 \cdot \log _{3} 5 \cdot \ldots \cdot \log _{3} 79}=2
$$

4．Let m，$m_{\text {，}}$ be a medians of a triangle drawn to the ides a，o，


$$
\frac{m_{b}}{a}=\frac{m_{a}}{b}=\frac{m_{a}}{a} \therefore \frac{\sqrt{3}}{2}
$$

6．Find ali values of real parameter pelf for which any real number $x$ satisfy at least to one of inequalities

$$
x^{2}-(1+4 p) x+4 p \geq 0, x^{2}-p x-3 x+3 p<0
$$

11－th form
1．Given aneles of a triangle．Find the angle between median and bisector．
2．Solve equaiton

$$
\frac{\operatorname{tig}^{2} x+\operatorname{tg}^{2} y}{1+\operatorname{ta}^{2} x+\operatorname{teg}^{2} y}=\sin ^{2} x+\sin ^{2} y
$$

3．Find values of parameter b such that system

$$
\left\{\begin{array}{l}
x \geq(v-b)^{2} \\
y \geq(x-b)^{2}
\end{array} \quad\right. \text { his a unique solution }
$$

4．Numbers $x, y, z$ such that $x^{2}+y^{2}+z^{2}=2$ ．Find is Greatest value of expression $x+y-3$
5. Golve for integer $x, y, z$

$$
\log _{2}(2 x-3 y+5 z+1)+\log _{2}(5 y-3 x-2 z-2)+\log _{2}(x-2 y-3 z+4)>z^{2}+9 z-15
$$

## 10-th form:

1. In a triangle with the sides $a, b, o$ drawn the bisectors. The points of intersection bisectors with opposite sides formed a second triangle. Prove that the ratio of triangles areas is equal to

$$
\frac{2 a b c}{(a+b) \cdot(b+c) \cdot(c+a)}
$$

2. Prove that $x^{12}-x^{9}+x^{4}-x+1>0$ for all $x$.
3. Given

$$
\left\{\begin{array}{l}
x+y+z=2 \\
x y+x z+y z=1
\end{array} \quad \text { Prove that } x, y, z \in\lceil 0,4 / 3\rceil\right.
$$

4. What $s$ greater $2^{57}$ or $3^{34}$.
S. Fumotion $y=a|x|+b|x-k|$ turns to zexo if $x=-1$ \& $x=3$. Moneover, given that function has a greatest value 2 . Find constants a,b,k.

## - - th form:

1. Find a value of expression

$$
\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z} \quad \text { if } \quad \frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}
$$

2. In triangle ABC point $K$ bisect. the side $B C \frac{B K i K C=}{a s=1: 2}$ and point M bisects the side $A B$ as $2: 3$. Drawn the Jines $A K \& C M$ which intersect at point $E$. What's a part of area of the triangle $A B C$ contain the area of triangle KME ? ( $A M: M B=2: 3$ )
3. Solve system of equation

$$
\left\{\begin{array}{l}
x^{2}-3 x y=x-6 \\
y^{2}+x y=8-y
\end{array}\right.
$$

4. Find the smallest value of expression $x^{2}+y^{2}$ if $x+2 y=1$.
5. Given that $a+b+c=0$, where $a, b, o$ are integer Prove that, $2 e^{4}+2 b^{4}+20^{4}$ is an exact square of some integer.
 ought send to our editorial office address.
In this issue we offer theme:

# ROUN ARROUND DUBLC POLYNOMAL 

Alt. Arkady<br>"Elikr" school<br>Ramat-Gan

The object of our mini-research is a polynomial of third degree: $P(x)=a \cdot x^{3}+b \cdot x^{2}+o \cdot x+d$ and corresponding to its cubic equation: $a \cdot x^{3}+b \cdot x^{2}+c \cdot x+d=0$.

Notice at the beginning that except reducing to unitary form (coefficient by $x^{3}$ is equal to 1 ) by straightforward division equation $a x^{3}+b x^{2}+c x+d=0 \quad b y$ a, we can get equation equivalent to the siven by another way namely, by etraightforward multiplication equation by $a^{2}$ and substitution ax=t yields
$a x^{3}+b x^{2}+c x+d=0 \Leftrightarrow\left\{\begin{array}{l}t^{3}+b t^{2}+a c t+a^{2} d=0 \\ x=\frac{t}{a}\end{array}\right.$
Such reducing usually use for searching rational roots where $a, b, c, d$ are integer. In the partioular case when $\mathrm{d}=1$, obviously $\mathrm{x}=0$ is not a root of the equation and we can carry out reducing to unitary form by substitution $1 \%=t$ In what follows we suppose that the cubic equation get form (i)

$$
\begin{equation*}
x^{3}+r \cdot x^{2}+p \cdot x+q=0 \tag{1}
\end{equation*}
$$

1. Prove that equation (1) always has real roots (at least one) (Show the pair of numbers $m \& M$ suob that $f(m) \cdot f(M)<0$. Then by oontinuity of function $f(x)=x^{3}+x^{2}+\mathrm{px}+\mathrm{g}$ onto interval (m,M) can be found point $o$ such that $f(c)=0$ ).
2.a) Prove that for any adR $f(x)=(x-a) \cdot g(x)+f(a)$, where $g(x)-$ a quadratic polynomial (Which ${ }^{2}$ ). (It a prtioular oase of Besu e theorem).
b) Prove that equation (1) has no more than three distinct roots.
2. Let $x=a$ be a root, then $f(x)=(x-a) \cdot g(x)$, where $g(x)$ is a quadratio polynomial. If eis)fo, then we shall say that xa is simple root of equation $f(x)=0$, otherwise $x=a$ call multiple root. And here's possible if $g(a)=0$ two cases either $g(x)=(x-a)^{2}$ or $g(x)=(x-a) \cdot(x-b)$, where bay. In first case a has multiplicity 3 and $f(x)=(x-a)^{3}$, in second case a has multiplicity 2 and $f(x)=(x-a)^{2} \cdot(x-b)$.
Prove that for any cubic equation of type (1) in it $s$ possible either cases:
3. $f(x)=0$ has an one simple roots and has no other roots in $\mathbb{R}$.
4. $f(x)=0$ has three simple roots.
5. $f(x)=0$ has an one root of multiplicity $Z$ and one simple.
6. $f(x)=0$ has one root of multiplicity 3 .

Find an examples for each of cases. It would be interesting to find conditions to which satisfy coefficients $r, p, q$ of equation in each of cases.
If we re saying that equation $f(x)=0$ has all root in $R$, then we mean any of cases except the case when equation has only one simple root.
4. Let all of three root of equation (1) be real. Denote them by $x_{1}, x_{2}, x_{9}$ (amone them nould be equal). Then ocom equality: $x^{3}+r \cdot x^{2}+p \cdot x+q=\left(x-x_{1}\right) \cdot\left(x-x_{2}\right) \cdot\left(x-x_{3}\right)$, and $\left\{\begin{array}{l}x_{1}+x_{2}+x_{3}=-x \\ x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}=p \\ x_{1} x_{2} x_{3}=-q\end{array} \quad\right.$ (2). Wiette of theorem for a polynom
(ii). Before going on we notice that complete equation (1) can be reduced by substitution $x=y-\frac{r}{3}$ to the form $y^{3}+b \cdot y+c=0 \quad(2)$, without the term by second degree. Derive the formulas $a, b, o$ through $p, q, r$.
Now we consider more detail this equation.

1. Show that if b>0 then equation (2) has a unique real root which by fixed $b$ can be considered as a function $x(c)$ of free term $c$. And if $0>0$ then this root is negative.
In supposition of 1 :
2. Prove that $x(c)$ is monotone decreasing onto $(-\infty, \infty$.
3. Prove that $x(c)$ is continuous onto $c-\infty, \infty$.
4. Prove that $X(c)$ is diffirentiable onto $(-\infty, \infty$ and find the form of derivative $x(c)$.
5. Prove that $x(c)$ has a derivative of second degree. find its form.
6. Prove if $0<0$ function $x(0)$ is convex, then when $c>0$ the function ie concave and $o=0$ is the point of inflection.
(iii). Now go back to the question of computing the roots of equation (2). Gince the case b=0 is trivial indeed (by the way, what we can say about roots of equation (2) in this case ?), then we consider two other cases

Case i. b $>0$.
Gubstitution $x=\sqrt{\frac{b}{3} \cdot\left(t-\frac{1}{t}\right)}$ into (2) vields quadratic equation relatively $t^{3}$. Which?

1. Is its always solvable?
2. Does it equivalent to the given equation?
3. Does appear stranee roots? If yes then how is possible to remove them?

Gase $2 . b<0$.
Sabe Subtution $\quad x=\sqrt{\frac{b}{a} \cdot\left(t+\frac{1}{t}\right)}$ yields to quadratic equation relatively $t^{3}$.
In this case is possible situations when quadratio equation has no roots.
(Show it. What situation is it ?). What supplementary condition does necessary to introduce on $b$ and $a$ in order to this way will give a results ? What would we do with two roots of the quadratic equation ? Are there a stranse roots, if yes than how can we remove them? How can we find the rest of the roots of cubic equation? (of course if there there exist). Are there a way out from the situation when the substitution carnot be used ? Maybe we should transfer to the complex domain?
(But without transfering into complex case we can get exhaustive information about roots of equation $\mathrm{y}^{3}+\mathrm{by}+\mathrm{c}=0$ in the set of real numbers. Who wish to get this information we offer followine man it s not a unique plan allowing us avoid complioate things which appear by subetitutions described before.
i. Consider oubio equation

$$
4 \cdot t^{3}-3 t=d, \text { where }|d| \leq 1
$$

Set $d=\cos a$ and use substitution $t=\cos p$ show that numbers

$$
t_{0}=\cos \frac{\alpha}{3}, \quad t_{1}=\cos \frac{\alpha+2 \pi}{3}, \quad t_{2}=\cos \frac{\alpha+4 \pi}{3}
$$

Eive full set of all real roots of equation $4 \mathrm{t}^{3}-3 \mathrm{t}=\mathrm{d}$ if $|\mathrm{d}| \leq 1$. Find how multiplicity of a root depend from the value of d. e. Consider equation $4 t^{3}-3 t=d$ \& $|d|>1$ and prove that

$$
t_{0}=\frac{\sqrt[3]{d+\sqrt{d^{2}-1}}-\sqrt[3]{d-\sqrt{d^{2}-1}}}{2}
$$

is a unique real root in considering case
CHint. Prove that $\left|t_{0}\right| \geq 1>$.
3. Consider equation $4 \mathrm{t}^{3}+3 \mathrm{t}=\mathrm{d}$ and prove that
$t_{0}=\frac{\sqrt[3]{\sqrt{d^{2}+1}+d}-\sqrt[3]{\sqrt{d^{2}+1}-d}}{2} \quad$ is a unique root of this equation.
4. Substitute $\mathrm{y}=2 \cdot \sqrt{\frac{\mathrm{~B}_{1}}{3} \cdot t}$ into equation $\mathrm{y}^{3}+\mathrm{by}+\mathrm{c}=\mathrm{d}$ and prove that in the cases of different sign of $b$ we suppose $b=0$ owo we get the equation equivalent to the given in either of considered above forms.
5. Formulate the results derived in the $1,2,3$ for equation
$\mathrm{y}^{3}+\mathrm{by}+\mathrm{c}=\mathrm{o}$ by usine subetitution $\mathrm{t}=\frac{\mathrm{y}}{2 \cdot \sqrt{\frac{\mathrm{br}}{3}}}$.

Whioh role in olassifications of possible oases plavs expression
$\mathrm{D}=\left(\frac{\mathrm{a}}{2}\right)^{2}+\left(\frac{\mathrm{F}}{3}\right)^{3}$. Find as vou oan the explicit formulas for solution
equation $y^{3}+b y+c=0$ in $\mathbb{F}$ relatively D .
CHint. Consider $\mathrm{D} \leq 0 \quad \& \quad \mathrm{D}>0$ ?).
(v). By considering complex domain appears new possibilities with new questions.
We write the cubic equation $x^{3}-r^{2}+p \cdot x-q=0$.

1. Prove that this cubic equation always has 3 solution in the set of complex numbers (the root taken account much times as multiplicity it has)
2. If we write the discriminant $\Delta$ of quadratic equation $x^{2}+p x+q=0$, by using roots of quadratic equation, then $A=p^{2}-4 q=\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}=\left(x_{1}-x_{2}\right)^{2}$.
Similarly, for cubic equation
$A=\left(x_{1}-x_{2}\right)^{2} \cdot\left(x_{1}-x_{3}\right)^{2} \cdot\left(x_{2}-x_{3}\right)^{2}$ all discriminant.
Prove following statements:
a) $\triangle \triangle 0$, then all of three roots are distinct
b) $\Delta=0$, then among roots of equation there are two which are equal
c) $\Delta<0$, then one root is real and two others are complex conjugate.
d) how $\Delta$ is connected with $D$.

However for distinction of situation with the root considering of discriminant is insufficiently, since $\Delta$ doesn t distinct cases when one of roots is of multiplicity 2 and another is simple from the case when one root of multiplicity 3. For distinction usually use expression

$$
\Delta_{1}=\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+\left(x_{1}-x_{3}\right)^{2}
$$

Prove that if $\Delta=0$ and
a) $\Delta_{1}=0$, then there is one root of multiplicity 3 .
b) $\Delta_{1} \neq 0$, then there are 2 roots: one of multiplicity 2 , another is simple. And $\Delta \geq 0$ is necessary condition in order to all roots be real.

Prove: $\Delta_{1}-2 \cdot\left(r^{2}-3 p\right)^{2}: \Delta=-4 r^{3} q+r^{2} p^{2}+18 \cdot r p q-4 p^{3}-27 q^{2}$
Frove theorem. For equation has all root be real and positive it's necessary and sufficiently that

$$
\left\{\begin{array}{l}
r \geq 0, \quad r \geq 0, \quad q \geq 0 \\
\Delta \geq 0
\end{array}\right.
$$

Try to prove results of this item without using complex using and analysis. We are interesting in connections geometry of triangle with cubic three terms (see article "Orthogonal elements in triangle).
Here we show the connection by following general statements:

1. Prove that by segments with lengths $X_{1}, x_{2}, x_{3}$ we can build a triangle if and only if

$$
\left(x_{1}+x_{2}-x_{3}\right) \cdot\left(x_{1}-x_{2}+x_{3}\right) \cdot\left(-x_{1}+x_{2}+x_{3}\right)>0
$$

2. By segments with the lengths which are roots of equation

$$
x^{3}+r \cdot x^{2}+p \cdot x+q=0
$$

we can build a non-degenerated triangle if and only if coefficients r, $\mathrm{p}, \mathrm{q}$ of this equation when $\Delta \geq 0, r>0, p>0, q<0$ satisfy inequality

$$
r^{3}-4 \cdot r p+8 \cdot q>0
$$

Thjs theme has unexpected continuation and applications. To be continued.

## NOTES ON THE MARGIN



Let $P(x)=x^{k}+a_{1} \cdot x^{k-1}+\ldots+a_{k}$ and $a_{1}, a_{2}, \ldots, a_{k}$ be an integer.
Then $P(x)=0$ either has no rational roots or has integer roots with each root must be a divisor of $a_{k}$.

## Proof:

Let $x=\frac{m}{n} \in \mathbb{Q}$ and $m \& n$ be a mutually coprime numbers. Then $P\left(\frac{m}{n}\right)=0 \Leftrightarrow$ $\Leftrightarrow m^{k}+a_{1} \cdot m^{k-1} \cdot n+\ldots+a_{k} \cdot n^{k}=0 \cdot \Leftrightarrow$
$\Leftrightarrow m^{k}=n \cdot\left(-a_{1} \cdot m^{k-1}+\ldots+a_{k} \cdot n^{k-1}\right)$
$\Leftrightarrow \mathrm{m}^{k} \therefore n$. Since n and m are mutually coprime then $n=1$.
So, if the root is a rational number, then it is an integer. If $x=m$ is integer root then

$$
\begin{aligned}
& m^{k}+a_{1} \cdot m^{k-1}+\ldots+a_{k-1} \cdot m+a_{k}=0 \Leftrightarrow \\
\Leftrightarrow & m \cdot\left(-a_{k-1}-\ldots-m^{k-1}\right)=a_{k} \Leftrightarrow a_{k} \therefore m .
\end{aligned}
$$

Hence, integer root must be a divisor of free term. If neither integer divisor of free term is a root of equation $P(x)=0$ then jt has no rational roots.
Example: $x^{3}-2 x^{2}-5 x+6=0$. The set of
divisors of 6 is $\{ \pm 1, \pm 2, \pm 3, \pm 6\}$
Among them $1,-2,3$ are roots. Since given equation can have no more than three roots we deduce $x_{1}=1, x_{2}=-2, x_{3}=3$ are roots of given equation.

Alt Arkady
"Blikh" school
Ramat-Gan,

Appearance of this notes is obligated to an innocent question as it seems for outside vision:
«To find pretty good bounds for the sum $S_{n}=\sum_{k=1}^{n} \operatorname{arctg} \sqrt{k}$, i.e. locate $S_{n}$ into interval $\left(m_{n}, M_{n}\right)$, where $m_{n}$ and $M_{n}$ some values depending from $n$ and more convenient for evaluaiton than $S_{n}$ ".
I ve been involved in this problem and look what came out.
I'll try to restore the way I've thought:
First of all I considered this sum as integral sum corresponded to the partitions of segment $[0, n]$ with unit step.
C Notice that function $f(x)=\operatorname{arctg} \sqrt{x}$ is convex on $(0, \infty)$. Actually,

$$
\left.f^{\prime}(x)=\frac{1}{2 \sqrt{x} \cdot(1+x)} \& f^{\prime}(x)=-\frac{(\sqrt{x} \cdot(1+x))^{1}}{2(\sqrt{x} \cdot(1+x))^{2}}<0 .\right)
$$

The area of curvilinear trapezoid bounded by $X$-axis \& by curve $y=a r c t g \sqrt{x}$ onto segment $[0, n]$ equal to $s \operatorname{arctg} \sqrt{x} d x$. Since $c_{i}$ has coordinates (i,0), then

$$
\begin{aligned}
& \sum_{i=0}^{n-1} S_{A_{i} D_{i} A_{i+1} C_{i+1}}=\sum_{i=0}^{n-1} \operatorname{arctg} \frac{1}{\sqrt{i+1}}=S_{n} \\
& \sum_{i=1}^{n-1} S_{C_{i} A_{i} B_{i} C_{i+1}}=\sum_{i=1}^{n-1} \operatorname{arctg} \frac{1}{\sqrt{i}}=S_{n-1}
\end{aligned}
$$

it follows that

$$
S_{n-1}<\int_{0}^{n} \operatorname{arctg} \sqrt{x} d x<S_{n}
$$



Figure

Calculate $s$ arete $\sqrt{x} d x$. We' ll do it by the integration by parts $\begin{aligned} & n_{s}^{n} \\ & 0\end{aligned} \operatorname{arctg} \sqrt{x} d x=\left[\begin{array}{l}u^{\prime}=1 \\ v=\operatorname{arctg} \sqrt{x} ;\end{array} \quad \begin{array}{l}u=x \\ v=\frac{1}{2 \sqrt{x} \cdot(1+x)}\end{array}\right]=\left.(x \cdot \operatorname{arctg} \sqrt{x})\right|_{0} ^{n}-\begin{aligned} & n \\ & 0\end{aligned} \frac{x d x}{2 \sqrt{x}(1+x)}$

$$
\begin{aligned}
& =n \cdot \operatorname{arctg} \sqrt{n}-\int_{0}^{n} \frac{x+1-1}{2 \sqrt{x} \cdot(1+x)} d x=n \cdot \operatorname{arctg} \sqrt{n}-\int_{0}^{n} \frac{d x}{2 \sqrt{x}}+\int_{o}^{n} \frac{d x}{2 \sqrt{x}(1+x)}= \\
& =n \cdot \operatorname{arctg} \sqrt{n}-\sqrt{n}+\operatorname{arctg} \sqrt{n}=(n+1) \cdot \operatorname{arctg} \sqrt{n}-\sqrt{n}
\end{aligned}
$$

Denote $(x+1) \cdot \operatorname{arctg} \sqrt{x}-\sqrt{x}$ by $F(x) . F(x)$ is primitive for $f(x)=\operatorname{arctg} \sqrt{x}$, since $F^{\prime}(x)=f(x)$.

Since $S_{n-1}<F(n)<S_{n}$, then $S_{n} \in\left(m_{n}, M_{n}\right)$, where $m_{n}=F(n)$ \& $M_{n}=F(n+1)$.
Look at behavior of length of an interval into which located the sum $S_{n}$ with $n \rightarrow \infty$ :

$$
M_{n}-m_{n}=(n+2) \cdot \operatorname{arctg} \sqrt{n+1}-(n+1) \cdot \operatorname{arctg} \sqrt{n}-(\sqrt{n+1}-\sqrt{n})
$$

Since $\operatorname{arctg} x+\operatorname{arctg} \frac{1}{x}=\frac{\pi}{2}$ for any $x \neq 0$, then

$$
F(n+1)-F(n)=\frac{\pi}{2}+(n+1) \cdot \operatorname{arctg} \frac{1}{\sqrt{n}}-(n+2) \cdot \operatorname{arctg} \frac{1}{\sqrt{n+1}}-(\sqrt{n+1}-\sqrt{n})
$$

From inequality $\sin x<x<\operatorname{tg} x$, for $0<x<\frac{\pi}{2}$ assuming $x=\operatorname{arctg} t, t>0$ we obtain inequality

$$
\frac{t}{\sqrt{1+t^{2}}}<\operatorname{arctg} t<t
$$

Hence

$$
\frac{1}{\sqrt{x}+1}<\operatorname{arctg} \frac{1}{\sqrt{x}}<\frac{1}{\sqrt{x}}
$$

It follows that

$$
\sqrt{n+1}<(n+1) \cdot \operatorname{arctg} \frac{1}{\sqrt{n}}<\frac{n+1}{\sqrt{n}} \text { and } \sqrt{n+2}<(n+2) \cdot \operatorname{arctg} \frac{1}{\sqrt{n+1}}<\frac{n+2}{\sqrt{n+1}}
$$

Subtracting second inequality from first inequality we get:

$$
\sqrt{n+1}-\frac{n+2}{\sqrt{n+1}}<(n+1) \cdot \operatorname{arctg} \frac{1}{\sqrt{n}}-\frac{n+1}{\sqrt{n}}<\frac{n+1}{\sqrt{n}}-\sqrt{n+2} \Leftrightarrow
$$

$-\frac{1}{\sqrt{n+1}}<(n+1) \cdot \operatorname{arctg} \frac{1}{\sqrt{n}}-(n+2) \cdot \operatorname{arctg} \frac{1}{\sqrt{n+1}}<\frac{n+1-\sqrt{n \cdot(n+2)}}{\sqrt{n}}=\frac{1}{\sqrt{n} \cdot(n+1+\sqrt{n(n+2)})}$ Since $\quad \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n+1}}=0$ and $\quad \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}(n+1+\sqrt{n(n+2)})}=0$, then

$$
\lim _{n \rightarrow \infty}\left((n+1) \cdot \operatorname{arctg} \frac{1}{\sqrt{n}}-(n+2) \cdot \operatorname{arctg} \frac{1}{\sqrt{n+1}}\right)=0
$$

Moreover,

$$
\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n})=0
$$

Thus, $\lim _{n \rightarrow \infty}\left(M_{n}-m_{n}\right)=\frac{\pi}{2}$.
Here we have to underline that $M_{n}-m_{n}$ monotone increasing approach $\frac{\pi}{2}$, the proof by Lagrange's mean value theorem ( $*$ ).

Actually,

$$
M_{n}-m_{n}=F(n+1)-F(n)=F^{\prime}\left(x_{n}\right)=f\left(x_{n}\right)=\operatorname{arctg} \sqrt{x_{n}}, \text { when } x_{n} \in(n, n+1)
$$

Hence,

$$
M_{n+1}-m_{n+1}=\operatorname{arctg} \sqrt{x_{n+1}}>\operatorname{arctg} \sqrt{n+1}>\operatorname{arctg} \sqrt{x_{n}}=M_{n}-m_{n} .
$$

When $n=1$ :
$M_{1}-m_{1}=F(2)-F(1)=3 \cdot \operatorname{arctg} \sqrt{2}-\sqrt{2}-2 \cdot \operatorname{arctg} 1+1=3 \cdot \operatorname{arctg} \sqrt{2}-\frac{\pi}{2}-\sqrt{2}+1$
(Prove straightly and no using calculator that

$$
\left.3 \cdot \operatorname{arctg} \sqrt{2}-\frac{\pi}{2}-\sqrt{2}+1<\frac{\pi}{2}\right)
$$

Hence:

$$
3 \cdot \operatorname{arctg} \sqrt{2}-\frac{\pi}{2}-\sqrt{2}+1<M_{n}-m_{n}<\frac{\pi}{2}
$$

So, the difference between upper and lower bound for $S_{n}$ increasing approach $\frac{\pi}{2}$. Can we think that we succeed? So far we have no better results, we can. Anyway I wasn't satisfied either length of interval $M_{n}-m_{n}$ and too cumbersome reasoning whereby we came to result.
Therefore I chose another way, hinted by identity

$$
\operatorname{arctg} x=\frac{\pi}{2}-\operatorname{arctg} \frac{1}{x}
$$

Then

$$
S_{n}=n \cdot \frac{\pi}{2}-\sum_{k=1}^{n} \operatorname{arctg} \frac{1}{\sqrt{k}}
$$

Denote the sum $\sum_{k=1}^{n} \operatorname{arctg} \frac{1}{\sqrt{k}}$ by $T_{n}$
and its in what follows will play most important role and as turn out further it will be a motive to turn the reflection on unexpected way. Now consider the sum $T_{n}$.
From inequality

$$
\cdot \frac{1}{\sqrt{k+1}}<\operatorname{arctg} \frac{1}{\sqrt{k}}<\frac{1}{\sqrt{k}} \quad \text { we get } \quad \sum_{k=1}^{n} \frac{1}{\sqrt{k+1}}<T_{n}<\sum_{k=1}^{n} \frac{1}{\sqrt{k}}
$$

Hence the question is to find upper \& lower bounds for $\sum_{k=1}^{n} \frac{1}{\sqrt{k}}$.
Here I'd remembered a problem that I've solved before.
This problem was offered on one of the Holland olympiads:
we'd prove inequality:

$$
1<2 \cdot \sqrt{n}-\sum_{k=1}^{n} \frac{1}{\sqrt{k}}<2
$$

We are going to prove it.

$$
1<2 \cdot \sqrt{n}-\sum_{k=1}^{n} \frac{1}{\sqrt{k}}<2 \Leftrightarrow 2 \cdot \sqrt{n}-2<\sum_{k=1}^{n} \frac{1}{\sqrt{k}}<2 \cdot \sqrt{n}-1
$$

Prove right-hand side inequality in the last double inequality by complete mathematic induction method:

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{1}{\sqrt{k}}<2 \cdot \sqrt{n}+\frac{1}{\sqrt{n+1}}-1 \text {. Notice that: } \\
& \frac{1}{\sqrt{n+1}}<2 \cdot(\sqrt{n+1}-\sqrt{n}) \Leftrightarrow \frac{1}{\sqrt{n+1}}<\frac{2}{\sqrt{n+1}+\sqrt{n}} \Leftrightarrow \sqrt{n+1}+\sqrt{n}<2 \cdot \sqrt{n+1} \Leftrightarrow \\
& \Leftrightarrow \sqrt{n}<\sqrt{n+1} .
\end{aligned}
$$

Hence, substituting $\frac{1}{\sqrt{n+1}}$ on $2 \cdot(\sqrt{n+1}-\sqrt{n})$
we obtain needed upper bound: $\quad 2 \cdot \sqrt{n+1}-1$.
The lower bound we cannot find by the same way. But one special way can be used here, I mean an integral sum:
$\left(\left(\frac{1}{\sqrt{x}}\right)^{\prime}=-\frac{1}{2 x \sqrt{x}},\left(x^{-1 / 2}\right)^{\prime \prime}=\frac{3}{4 x^{2} \sqrt{x}}>0\right.$, i. e. $f(x)=\frac{1}{\sqrt{x}}$ concave \& decrease $)$.

$$
\int_{i}^{n} \frac{1}{\sqrt{x}} d x<\sum_{k=1}^{n} \frac{1}{\sqrt{k}}
$$

Hence, since

$$
\int_{1}^{n} \frac{d x}{\sqrt{x}}=\left.(2 \cdot \sqrt{x})\right|_{i} ^{n}=2 \cdot \sqrt{n}-2
$$


we get needed inequality.

However this way of proof didn't satisfy me. I've decided to think a little and try to find the elementary proof of that inequality using minimum of means. An idea came to me at the same moment as soon I deliberately limited myself in means, and I got stronger inequality.

Actually,
$2 \cdot(\sqrt{\mathrm{k}+1}-\sqrt{\mathrm{k}})<\frac{1}{\sqrt{\mathrm{k}}}<2 \cdot(\sqrt{\mathrm{k}}-\sqrt{\mathrm{k}-1}) \Leftrightarrow \frac{2}{\sqrt{\mathrm{k}-1}+\sqrt{\mathrm{k}}}<\frac{1}{\sqrt{k}}<\frac{2}{\sqrt{k}+\sqrt{\mathrm{k}+1}}$,
that's obviously true for $k>1$.
Hence

$$
\sum_{k=2}^{n} \frac{1}{\sqrt{k}}<2 \cdot \sqrt{k}-2 \Leftrightarrow \sum_{k=1}^{n} \frac{1}{\sqrt{k}}<2 \cdot \sqrt{n}-1 \& \sum_{k=1}^{n} \frac{1}{\sqrt{k}}>2 \cdot(\sqrt{n+1}-1)>2 \cdot \sqrt{n}-2
$$

Thus

$$
2 \cdot \sqrt{n+1}-2<\sum_{k=1}^{n} \frac{1}{\sqrt{k}}<2 \cdot \sqrt{n+1}-1
$$

Go back to initial problem, i.e. to bounds for sum $T_{n}=\sum_{k=1}^{n} \operatorname{arctg} \frac{1}{\sqrt{k}}$.

We have

$$
-1+\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}}<T_{n}<\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \Leftrightarrow 2 \cdot \sqrt{n+2}-3<T_{n}<2 \cdot \sqrt{n}-1
$$

Hence,

$$
m_{n}=\frac{n \pi}{2}-2 \cdot \sqrt{n}+1<S_{n}<\frac{n \pi}{2}-2 \cdot \sqrt{n+2}+3=M_{n}
$$

The length of interval located the sum is equal to

$$
2-2 \cdot(\sqrt{n+2}-\sqrt{n})=2-\frac{4}{\sqrt{n+2}+\sqrt{n}} .
$$

So,

$$
M_{n}-m_{n}=2-\frac{4}{\sqrt{n+2}+\sqrt{n}} \quad \& \quad \underset{n \rightarrow \infty}{ }\left(M_{n}-m_{n}\right)=2
$$

Even the last estimation for $S_{n}$ has got by very simple way and that estimation not much worse then integral ( $\frac{\pi}{2} \approx 1.5$ ), however both of them didn't satisfy me. Under last circumstance I took this problem seriously.

I dropped it and decided to look back and ask to myself follows question 1) What do I want ? ; 2) What does it look like?

At the moment. I answered to first question: I want good asymptotic, i.e. find such function $\varphi(n)$, that $\underset{n \rightarrow \infty}{\lim _{n}}\left(S_{n}-\varphi(n)\right)=0$, and which more convenient for straightforward calculation then $S_{n}$.
As regard second question, the work we have done doesn't go for nothing, since $I$ remembered that before $I$ 've met with $\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}-2 \cdot \sqrt{n}$, namely I offered for my pupils such problem, to be more precisely, the following series of problems.

Consider two sequences:

$$
a_{n}:=\sum_{k=1}^{n} \frac{1}{\sqrt{k}}-2 \cdot \sqrt{n+1} \quad \& \quad b_{n}:=\sum_{k=1}^{n} \frac{1}{\sqrt{k}}-2 \cdot \sqrt{n}
$$

1. Prove $a_{n}$ is monotone increasing.
2. Prove $b_{n}$ is monotone decreasing.
3. Prove $b_{n}-a_{n} \rightarrow 0$ when $n \rightarrow \infty$
4. Sequences $a_{n} \& b_{n}$ approach the same number (denote it by $C_{1 / 2}$ ).

Similarly questions for sequences:

$$
a_{n}:=\sum_{k=1}^{n} \frac{1}{k}-\ln n \quad \& \quad b_{n}:=\sum_{k=1}^{n} \frac{1}{k}-\ln (n+1)
$$

And in this case both of sequences have a common limit $C_{1}$, which was called Euler's constant and has special notation $\nu \approx 0.5772156649 .$.

Obviously, in either cases we have for $\sum_{k=1}^{n} \frac{1}{\sqrt{k}}$ asymptotic $2 \cdot \sqrt{n}+C_{1 / 2}$, and for $\sum_{k=1}^{n} \frac{1}{k}$ asymptotic $\ln n+C_{1}$.
I cannot be silent and I have to pay attention on follows complect of problems on asymptotic for $\sum_{k=1}^{n} \frac{1}{k}$.
Consider sum $P_{n}=\sum_{k=1}^{n} \frac{1}{k} \cdot(-1)^{k+1}$, and denote $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$. Then:
Problem 1. Prove $\mathrm{P}_{2 n}=\mathrm{H}_{2 n}-\mathrm{H}_{\mathrm{n}}$.
Problem 2. Prove $\lim _{n \rightarrow \infty} P_{2 n}=\ln 2$.
Problem 3. Prove $\lim _{n \rightarrow \infty} P_{n}=\ln 2$.
Give back to associations, we ll be going on, setting before ourself the problem of searching asymptotic for $T_{n}$. Considered above problems put us on to an idea that in this case we can do the same by offered scheme, considering consequently

$$
a_{n}:=T_{n}-F(n+1) \quad \& b_{n}:=T_{n}-F(n)
$$

with $F(x)$ - primitive of function $f(x)=\operatorname{arctg} \frac{1}{\sqrt{x}}$
as I did, but I had defined before a primitive. When I finished the reducing I ask myself: what does compel me to tie reasoning to concrete function $f(x)$ if everything point to common character of reasoning ?
Transition to general problem as it happening frequently, visibly reduced technical work and naked essence of problem. So, let

$$
T_{n}(f):=\sum_{k=1}^{n} f(k) \text {, with } \lim _{x \rightarrow \infty} f(x)=0 \text { and }
$$

$f(x)$ monotone decreasing, differntiable, positive function.
$F(x)$ is the primitive for $f(x)$ onto $[1, \infty)$.
Obviously $F(x)$ is monotone increasing. More accurate definition of $f(x)$ and $F(x)$ will do by necessative.
Consider sequences: $a_{n}:=T_{n}(f)-F(n+1) \& b_{n}:=T_{n}(f)-F(n)$. Obviuosly, for any $n \in \mathbb{N} \quad a_{n}<b_{n}$.
Prove $a_{n}$ - monotone increasing \& $b_{n}$ - monotone decreasing functions:

1. $a_{n+1}-a_{n}=\left(T_{n+1}(f)-F(n+2)\right)-\left(T_{n}(f)-F(n+1)\right)=$
$=\left(T_{n+1}(f)-T_{n}(f)\right)-(F(n+2)-F(n+1))=f(n+1)-F^{\prime}\left(d_{n}\right)=f(n+1)-f\left(d_{n}\right)$,
where $d_{n} \in(n+1, n+2)$ by Lagrange's Mean value theorem ( $*$ ).
But since
$d_{n}>n+1$, then $f\left(d_{n}\right)<f(n+1)$, since $f(x)$ is monotone decreasing.

Therefore, $a_{n+1}-a_{n}>0$.
2. $b_{n+1}-b_{n}=\left(T_{n+1}(f)-F(n+1)\right)-\left(T_{n}(f)-F(n)\right)=$
$=\left(T_{n+1}(f)-T_{n}(f)\right)-(F(n+1)-F(n))=f(n+1)-F^{\prime}\left(\bar{d}_{n}\right)=f(n+1)-f\left(\overline{d_{n}}\right)$,
where $\bar{d}_{n} \in(n, n+1)$ by Lagrange's theorem.
Since $\bar{d}_{n}<n+1$, then $f\left(\bar{d}_{n}\right)>f(n+1)$, therefore $b_{n+1}-b_{n}<0$.
3. Since $a_{1}<a_{n}<b_{n}<b_{1}$, then the both of sequences have limits as monotone and bounded sequences.
4. $b_{n}-a_{n}=F(n+1)-F(n)=f\left(\tilde{d}_{n}\right)$, where $\tilde{d}_{n} \in(n, n+1)$.

Hence, $f(n+1)<b_{n}-a_{n}<f(n)$
and it follows, $\quad \lim _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=0$.
Thus, the both of sequences converge to the same number which in what follows we 11 call $C_{f}$.
So, $a_{n}<C_{f}<b_{n}$ for any $n \in \mathbb{N}$, i.e.

$$
T_{n}-F(n+1)<C_{f}<T_{n}-F(n) \Leftrightarrow F(n)+C_{f}<T_{n}(f)<F(n+1)+C_{f}
$$

if assume $\varphi(n):=F(n)+C_{f}$, then occur inequality:

$$
\varphi(n)<T_{n}(f)<\varphi(n+1),
$$

here the upper and lower bound can't be improved, since $\lim _{n \rightarrow \infty}(\varphi(n+1)-\varphi(n))=0$ and function $\varphi(n)$ is asymptotic for $T_{n}(f)$, since $\lim _{n \rightarrow \infty}\left(T_{n}(f)-\varphi(n)\right)=0$

For asymptotic $T_{n}(f)$, where $f(x)=\operatorname{arctg} \frac{1}{\sqrt{x}}$ we have to verify holding of the demands to function $f(x)$ and find its primitive.

1. $f(x)$ is monotone decreasing, since
$\operatorname{arctg} \frac{1}{\sqrt{x}}=\frac{\pi}{2}-\operatorname{arctg} \sqrt{x} \quad \& \quad \operatorname{arctg} \sqrt{x}$ is monotone increasing.
2. $\lim _{x \rightarrow \infty} f(x)=\underset{x \rightarrow \infty}{\lim } \operatorname{arctg} \frac{1}{\sqrt{x}}=0$.
3. We have the primitive for $\operatorname{arctg} \sqrt{x}$, its equal to $(x+1) \cdot \operatorname{arctg} \sqrt{x}-\sqrt{x}$.

Since $f(x)=\frac{\pi}{2}-\operatorname{arctg} \sqrt{x}$, then
$F(x)=\frac{\pi}{2} x-(x+1) \cdot \operatorname{arctg} \sqrt{x}+\sqrt{x}+c=c+\frac{\pi}{2} x-(x+1) \cdot\left(\frac{\pi}{2}-\operatorname{arctg} \frac{1}{\sqrt{x}}\right)+\sqrt{x}$ $=(x+1) \cdot \operatorname{arctg} \frac{1}{\sqrt{x}}+\sqrt{x}-\frac{\pi}{2}+c$.

Assuming $c=\frac{\pi}{2}$ we obtain $F(x)=(x+1) \cdot \operatorname{arctg} \frac{1}{\sqrt{x}}+\sqrt{x}$.

Then if

$$
C_{f}=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \operatorname{arctg} \frac{1}{\sqrt{k}}-(n+1) \cdot \operatorname{arctg} \frac{1}{\sqrt{n}}-\sqrt{n}\right)
$$

then

$$
\mu(n):=(n+1) \cdot \operatorname{arctg} \frac{1}{\sqrt{n}}+\sqrt{n}+C_{f}
$$

- is asymptotic for the sum $T_{n}=\sum_{k=1}^{n} \operatorname{arctg} \frac{1}{\sqrt{k}}$ and holding inequality:

$$
C_{f}+(n+1) \cdot \operatorname{arctg} \frac{1}{\sqrt{n}}<\sum_{k=1}^{n} \operatorname{arctg} \frac{1}{\sqrt{k}}<C_{f}+(n+2) \cdot \operatorname{arctg} \frac{1}{\sqrt{n+1}}+\sqrt{n+1}
$$

The value of $C_{f}$ what we de evaluated on computer equal to $C_{f}=-2.1474246867$ when $n=2330$.
Note. All these reasoning are holding for $f(x)$ which is monotone increasing and has horizontal asymptotic.

## (*). Appendix:

Rollya's Theorem. Let $f(x)$ is continuous function onto $[a, b]$ and differentiable onto $(a, b) \& f(a)=f(b)$, then there exist $c \in(a, b)$ such that $f^{\prime}(c)=0$.
Proof: Denote $m=\min _{x \in\{a, b f} f(x)=f\left(x_{*}\right) \quad \& \quad M=\max _{x \in \max _{b},} f(x)=f\left(x^{*}\right)$, where $X_{*} \& X^{*}$ some points of segment $[a, b]$. It's possible two cases: 1. Two-elements sets are equal: $\left\{x_{*}, x^{*}\right\}=\{a, b\}$, then $m=M$, since
$f(a)=f(b)$ and it follows, $f(x)=$ const $\& f^{\prime}(x)=0$ for any $x \in(a, b)$. 2. $\left\{x_{*}, x^{*}\right\} \neq\{a, b\}$, then at least either $x_{*}$ or $x^{*}$ belongs to interval ( $a, b$ ) Function $f(x)$ into that point, has extremum. If we denote this point
. by $c$, we get $f^{\prime}(c)=0 \& c \in(a, b)$.
Geometric mean is: if function $f(x)$ satisfy the theorem then we can find at least one point $c \in(a, b)$ such that tangent to the function graph $y=f(x)$ in the point with c-absciss is parallel to the $X$-axis.


Mean value Theotem. Let $f(x)$ is continuous function onto segment $[a, b]$ and differetiable onto interval ( $a, b$ ), then there exist $c \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

(Geometric mean is: we can find the point $c \in(a, b)$, such that the tangent to the function graph with c-absciss is parallel to the chord connected points ( $a, f(a)$ ) and ( $b, f(b))$ ).

## Proof:

$y=\frac{f(b)-f(a)}{b-a} \cdot(x-a)+f(a)-$ equation of line going through points $A(a, f(a)) \& B(b, f(b))$, then since the points $A \& B$ are laying on the graph of $y=f(x)$ and on line, then function, $\varphi(x)=f(x)-\frac{f(b)-f(a)}{b-a} \cdot(x-a)-f(a)$

(as continuous function on $[a, b]$ and differentiable on ( $a, b$ )) in the points $\mathrm{a} \& \mathrm{~b}$ equal to zero.
Then by Rollya's theorem there exist $c \in(a, b)$, such that

$$
\varphi(c)=0 ; \quad \varphi(x)=f(x)-\frac{f(b)-f(a)}{b-a}
$$

Thus

$$
\varphi(c)=0=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}
$$

## NOTES ON THE MARGIN

From
From equation of the fourth degree $x^{4}+a \cdot x^{3}+b \cdot x^{2}+c \cdot x+d=0$ by substitution $x=y-\frac{a}{4}$ we get equaiton $y^{4}+b \cdot y^{2}+c \cdot y+d=0$.
Therefore, worth while to consider equation of $4-$ th degree as $x^{4}+b x^{2}+c x+d=0$. Let $p$ be a parameter, then equation can be rewritten $\left(x^{2}+p\right)^{2}-2 p \cdot x^{2}-p^{2}+b \cdot x^{2}+c \cdot x+d=0 \Leftrightarrow\left(x^{2}+p\right)^{2}=x^{2} \cdot(2 p-b)-c \cdot x^{2}+p^{2}-d$
In the right-hand side we have quadratic polynomial. By choosing $p$ we can obtain that this quadratic polynomial be an exact square accurate to a sign, i.e. $\pm(k \cdot x+1)^{2}$. For that sufficiently choose $p$ so that the discriminant of quadratic polynomial be equal to 0 , i.e. $c^{2}+4 \cdot\left(d-p^{2}\right) \cdot(2 p-b)=0$.
Derived equation is an equation of the third degree relatively $p$. And an equation of the third degree always has solution. Substitution derived value of $p$ into the equation yields $\left(x^{2}+p\right)^{2}= \pm(k x+1)^{2}$.
If the sign of exact square is minus, then given equation has no real roots. If the sign of exact square is plus then we get two quadratic equations

$$
\left[\begin{array}{l}
x^{2}+p=k x+1 \\
x^{2}+p=-k x-1
\end{array}\right.
$$

By solving them we obtain the solutions of given equation of the 4 -th degree.

# VARATMON ON MEDUALTY THEME 

Alt Arkady
"Blikh" school
Ramat-Gari,


#### Abstract

The reader who doesnt know some elements of analysis ilimits, continuity, derivatives) can pass those paris without ary damage for understanding the rest of article ithese parts have another print typel.


## Variation 1.

Consider inequality which holds for any real numbers $x$ \& $y$ :

$$
\begin{equation*}
(x-y)^{2} \geq 0 \tag{1}
\end{equation*}
$$

Its obviously equivalent inequality:

$$
\begin{equation*}
\frac{x^{2}+y^{2}}{2} \geq x \cdot y \tag{2}
\end{equation*}
$$

Where equality js possible when $x=y$. If a and $b$ are positive numbers, then setting $x=\sqrt{a} \& y=\sqrt{b}$ we get Cauchy inequality (particular case):

$$
\begin{equation*}
\frac{a+b}{2} \geq \sqrt{a b} \tag{3}
\end{equation*}
$$

Equality is possible when $a=b$ only. But inequality (3) we could get straightforward from the trivial inequality $(\sqrt{a}-\sqrt{b})^{2} \geq 0$. Consider some problems on inequality proving, for which solution require special and unordinary ways of using inequalities in form (2) or (3). Example 1 . Prove inequality $a^{2}+b^{2}+c^{2} \geq a b+b c+a c$, where $a, b, c-$ non-negative numbers.
Solution:
$a^{2}+b^{2}+c^{2}=\frac{a^{2}+b^{2}}{2}+\frac{b^{2}+c^{2}}{2}+\frac{c^{2}+b^{2}}{2} \geq a b+b o+$ ac. Equality ocour when a-bac.
Example 2 . Prove inequality $a^{4}+b^{4}+c^{4} \geq a b o(a+b+c)$ for non-negative numbers $a, b, c$.

Solution:
$a^{4}+b^{4}+c^{4} \geq a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}=\frac{a^{2} b^{2}+b^{2} c^{2}}{2}+\frac{b^{2} c^{2}+c^{2} a^{2}}{2}+\frac{c^{2} a^{2}+a^{2} b^{2}}{2} \geq$ $\geq b^{2} a c+c^{2} a b+a^{2} b c=a b c \cdot(a+b+c)$.

Example 3. For $x, y, z \geq 0$ prove inequality: $x y+y z+z x \geq \sqrt{3 x y z \cdot(x+y+z)}$.
Solution:
$(x y+y z+z x)^{2}=x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}+2 x y \cdot y z+2 y z \cdot z x+2 x y \cdot z x=\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)+$ $+2 x y z \cdot(x+y+z) \geq x y z \cdot(x+y+z)+2 x y z \cdot(x+y+z)=3 x y z \cdot(x+y+z)$.

Exercise 1. Prove for positive numbers $a, b, c$ inequality

$$
\frac{a^{a}+b^{a}+c^{a}}{a^{3} b^{3} c^{3}} \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}
$$

Exercise 2. Prove for non-negative numbers $a, b, c$ follows inequalities
a) $a^{2} \cdot\left(1+b^{2}\right)+b^{2} \cdot\left(1+c^{2}\right)+c^{2} \cdot\left(1+a^{2}\right) \geq 6 \cdot a b c$
6) $6 \cdot a b c \leq a b \cdot(a+b)+b c \cdot(b+c)+c a \cdot(c+a) \leq 2 \cdot\left(a^{3}+b^{3}+c^{3}\right)$

Exercise 3. Find out what s greater:
a) $2+\sqrt{3}$ or ${ }^{4} \sqrt{192}$
b) ${ }^{3} \sqrt{ } 4-{ }^{3} \sqrt{10}+{ }^{3} \sqrt{25}$ or ${ }^{3} \sqrt{6}-{ }^{3} \sqrt{9}+{ }^{3} \sqrt{15}$

Exercise 4.
a) Prove inequality for non-negative a \& $b$ :

$$
2 \cdot \sqrt{a^{2}+a b+b^{2}} \geq \sqrt{3} \cdot(a+b)
$$

6) Prove ineguality for non-negative $x, y, z$

$$
\sqrt{x^{2}+x y+y^{2}}+\sqrt{y^{2}+y z+z^{2}}+\sqrt{z^{2}+z x+x^{2}} \geq \sqrt{3} \cdot(x+y+z)
$$

B) Prove inequality for positive $x, y, z$

$$
\frac{x+y+z}{3 \sqrt{3}} \geq \frac{x y+y z+x z}{\sqrt{x^{2}+x y+y^{2}}+\sqrt{y^{2}+y z+z^{2}}+\sqrt{z^{2}+z x+x^{2}}}
$$

Follows series of problems which are especially that for their solution unsufficient inequality (2) or (3). We can get desired result by combine Cauchy inequality with another very important inequality which we can consjider as base inequality. Consjder two ordered pair of numbers ( $a, b$ ) \& ( $c, d$ ). (Ordered pair, it means that each of two numbers has its place in the pair. In this meanine, the pairs $(a, b) \neq(b, a)$ and pairs ( $a, b)$ \& ( $c, d$ ) are equals if and only if $a=c \& b=d$.).
Definftion. In what follows we shall say ( $a, b$ ) \& ( $c, d$ ) are concordant in order, if simultaneously $a \leq b \& c \leq d$ or $a \geq b$ \& $c \geq d$. Otherwise, we saying that pairs are not concordant.
Follows statement is trivial. Pairs $(a, b) \&(c, d)$ are concordant in order if and only if $(a-b) \cdot(c-d) \geq 0$.
So, let pairs ( $a, b$ ) \& ( $c, d$ ) are concordant in order, then:

$$
\begin{equation*}
a c+b d \geq a d+b c \tag{4}
\end{equation*}
$$

For instance:

1. Pairs $\left(x^{2}, y^{2}\right) \&\left(x^{3}, y^{3}\right)$ are concordant in order and it means that holds inequality $x^{5}+y^{5} \geq x^{2} y^{3}+y^{2} x^{3}$.
2. Pairs $\left(\sin ^{3} x, \cos ^{3} x\right) \&\left(\frac{1}{\cos x}, \frac{1}{\sin x}\right)$ are concordant for $\left(0, \frac{\pi}{2}\right)$. Hence, $\quad \frac{\sin ^{3} x}{\cos x}+\frac{\cos ^{3} x}{\sin x} \geq 1$.
3. Let functions $f(x)$ \& $g(x)$ are monotone increasing (decreasing) on some range $D$, then pairs $(f(x), f(y)) \&(g(x), g(y))$ are concordant in order for any x and y from this domain and holds inequality:

$$
\begin{equation*}
f(x) \cdot g(x)+f(y) \cdot g(y) \geq f(x) \cdot g(y)+f(y) \cdot g(x), \quad x, y \in \mathbb{R} \tag{5}
\end{equation*}
$$

4. Let $x, y>0$, then pairs $(x, y) \&\left(\frac{1}{y}, \frac{1}{x}\right)$ are concordant in order. More generally, if $f \& g$ have different monotone character (one is decreasing, another is increasing), then pairs $(f(x), f(y)) \&(g(y), g(x))$ are concordant in order and it means:

$$
\begin{equation*}
f(x) \cdot g(y)+f(y) \cdot g(x) \geq f(x) \cdot g(x)+f(y) \cdot g(y) \tag{6}
\end{equation*}
$$

Now go back to problems.
Example 4. Prove inequality $a^{5}+b^{5}+c^{5} \geq a b c$ (ab+bc+ca), where $a, b, c \geq 0$. Solution: Since for any non-negative $x$ and $y$ pairs ( $x, y$ ) $\&$ ( $x^{4}, y^{4}$ ) are concordant in order, then $x^{5}+y^{5} \geq x^{4} y+x y^{4}$. Hence,
$a^{5}+b^{5}+c^{5}=\frac{a^{5}+b^{5}}{2}+\frac{b^{5}+c^{5}}{2}+\frac{c^{5}+a^{5}}{2} \geq \frac{a^{4} b+a b^{4}}{2}+\frac{b^{4} c+b c^{4}}{2}+\frac{c^{4} a+c a^{4}}{2}=$ $\frac{a^{4} b+b c^{4}}{2}+\frac{b^{4} c+c a^{4}}{2}+\frac{c^{4} a+a b^{4}}{2} \geqslant a^{2} b c^{2}+b^{2} c a^{2}+c^{2} a b^{2}=a b c \cdot(a+b+c)$.

Example 5. For a,b, c>0 prove inequality

$$
a+b+c \leq \frac{a^{2}+b^{2}}{2 c}+\frac{b^{2}+c^{2}}{2 a}+\frac{c^{2}+a^{2}}{2 b} \leq \frac{a^{3}}{b c}+\frac{b^{3}}{a c}+\frac{c^{3}}{a b}
$$

Solution:

1. $\frac{a^{2}+b^{2}}{2 c}+\frac{b^{2}+c^{2}}{2 a}+\frac{c^{2}+a^{2}}{2 b}=\frac{2 a b}{2 c}+\frac{2 b c}{2 a}+\frac{2 a c}{2 b}=\frac{1}{2}\left(\frac{a b}{c}+\frac{b c}{a}\right)+\frac{1}{2}\left(\frac{b c}{a}+\frac{a c}{b}\right)+$ $+\frac{1}{2}\left(\frac{a b}{a}+\frac{a c}{b}\right) \geq b+c+a$.
2. $\frac{a^{3}}{b c}+\frac{b^{3}}{a c}+\frac{c^{3}}{a b}=\frac{a^{4}+b^{4}+c^{4}}{a b c}$. But pairs $(x, y) \&\left(x^{3}, y^{3}\right)$ are concordant in order for any $x \& y$, and it means $x^{4}+y^{4} \geq x^{3} y+x y^{3}$.
Therefore.
$a^{4}+b^{4}+c^{4}=\frac{a^{4}+b^{4}}{2}+\frac{b^{4}+c^{4}}{2}+\frac{a^{4}+c^{4}}{2} \geq \frac{1}{2}\left(a^{3} b+a b^{3}\right)+\frac{1}{2}\left(b^{3} c+b c^{3}\right)+\frac{1}{2}\left(c^{3} a+a c^{3}\right)=$

$$
=\frac{1}{2} a b\left(a^{2}+b^{2}\right)+\frac{1}{2} b c\left(b^{2}+c^{2}\right)+\frac{1}{2} a c\left(a^{2}+c^{2}\right) .
$$

It follows that

$$
\frac{a^{3}}{b c}+\frac{b^{3}}{a a}+\frac{c^{3}}{a b}=\frac{a^{2}+b^{2}}{2 c}+\frac{b^{2}+c^{2}}{2 a}+\frac{c^{2}+a^{2}}{2 b}
$$

Gometimes djfficult, to get concordant pairs, however, if we can get them then it could be sufficient for proving some difficult inequalities, for instance, inequality from next example (IMO IV - International Mathematics Olympiad).

Example 6 . Prove for $a, b, c \geq 0$ inequality:

$$
(a+b+c)^{3}-4 \cdot(a+b+c) \cdot(a b+b c+a c)+9 \cdot a b c \geq 0
$$

Solution:
Remove the bracket, perform operations and group similar terms, we get inequality:

$$
a^{3}+b^{3}+c^{3}+3 a b c \geq a^{2} b+a b^{2}+b c^{2}+c^{2} a+a c^{2} .
$$

Since this inequality is not changing by permutations of numbers $a, b, c$, then we can define that $a \geq b \geq 0$. So,
$a^{3}+b^{3}+c^{3}+3 a b c=a \cdot\left(a^{2}+b c\right)+b \cdot\left(b^{2}+a c\right)+c \cdot\left(c^{2}+a b\right)$.
Pairs $(a, b) \&\left(a^{2}+b c, b^{2}+a c\right)$ are concordant, since

$$
a^{2}+b c-\left(b^{2}+a c\right)=(a-b) \cdot(a+b)-c \cdot(a-b)=(a-b) \cdot(a+b-c) \geq(a-b) \cdot(b-c) \geq 0 .
$$

Therefore,

$$
a\left(a^{2}+b c\right)+b\left(b^{2}+a c\right) \geq a\left(b^{2}+a c\right)+b\left(a^{2}+b c\right)
$$

Thus
$a^{3}+b^{3}+c^{3}+3 a b c \geq a \cdot\left(b^{2}+a c\right)+b \cdot\left(a^{2}+b c\right)+c \cdot\left(c^{2}+a b\right)=a b^{2}+a^{2} c+b a^{2}$ $+b^{2} c+c^{3}+a b c=\left(a^{2} b+a b^{2}\right)+a^{2} c+b c^{2}+c^{3}+a b c$.

To complete the proof we have to show that
$c^{3}+a b c \geq a c^{2}+b c^{2} \Leftrightarrow c \cdot\left(c^{2}+a b-a c-b c\right) \geq 0 \Leftrightarrow c \cdot(c-a) \cdot(c-b) \geq 0$.
In this example we have not used the Cauchy's inequality. However, this example in this place appeared by some purpose. Namely, we re going to pay attention by some period of time on using concordant pairs, moreover,
the Cauchy inequaljty $x^{2}+y^{2} 22 x y$ is equivalent to trivial fact -
concordance of two pairs $(x, y) \&(x, y)$. But as you have seen the corollaries from this trivial fact are not so trivial.

Rewrite that inequality in another form, supposing $x, y>0$,

$$
\frac{x^{2}}{y} \geq 2 \cdot x-y
$$

(7), equaljty when $x=y$.

We just rewrote the trivial inequality in another form and the essence has not changed. But with help of new form the inequality (1) acquire new possibility for using.
Example 7. (IMO XXIV). Prove inequality:

$$
x^{3} z+y^{3} x+z^{3} y \geq x^{2} y z+x y^{2} z+x y z^{2}, \quad x, y, z \geq 0
$$

Solution:
Since cases $x=0$ or $y=0$ or $z=0$ are obvious then we 11 suppose that $x, y, z>0$. Therefore, for positive $x, y, z$ by straightforward division by xyz
we obtain inequality:

$$
\frac{x^{2}}{y}+\frac{y^{2}}{z}+\frac{z^{2}}{x} \geq x+y+z
$$

But using inequality (7) gives opportunity to prove it at one line

$$
\frac{x^{2}}{y}+\frac{y^{2}}{z}+\frac{z^{2}}{x} \geq(2 x-y)+(2 y-z)+(2 z-x)=x+y+z
$$

Where equality occur only when $x=y=z$.
By using others concordant pairs we can get other base inequality from which trivial corollaries are not trivial inequalities.
For instance:

1. Inequality $x^{4}+y^{4} \geq x^{3} y+x^{3}$ is corresponded to concordant pairs ( $x, y$ )
$\&\left(x^{3}, y^{3}\right)$ and when $x, y>0$ it could be rewritten: $\quad \frac{x^{4}}{y} \geq x^{3}-y^{3}+x y^{2}$.
Hence, right here for $x, y, z>0$ it follows that $\frac{x^{4}}{y}+\frac{y^{4}}{z}+\frac{z^{4}}{x}=x y^{2}+y z^{2}+z x^{2}$, which could be written so: $\frac{x^{3}}{y^{2} z}+\frac{y^{3}}{z^{2} x}+\frac{z^{3}}{x^{2} y} \geq \frac{x}{y}+\frac{y}{z}+\frac{z}{x} \quad$ or
like thia: $\quad x^{5} z+y^{5} x+z^{5} y=x y^{2} z^{3}+x^{3} y z^{2}+x^{2} y^{3} z$ for $x, y, z \geq 0$.
(lry to solve those inequalities by other way and you ll understand that it couldn't be so easy !)
2. Inequality $x^{5}+y^{5} \geq x^{3} y^{2}+y^{3} x^{2}$ is corresponded to concordant pairs $\left(x^{2}, y^{2}\right) \&\left(x^{3}, y^{3}\right)$ for $x, y \geq 0$. In case $x, y>0$ it follows that $\frac{x^{5}}{y^{2}} \geq x^{3}-y^{3}+y x^{2}$, or by straightforward division by $x^{2} y^{2}: \frac{x^{3}}{y^{2}}+\frac{y^{3}}{x^{2}} \geq x+y$. 3. Inequality $x^{5}+y^{5} \geq x^{4} y+x y^{4}$ is corresponded to concordant pairs $(x, y) \&$ ( $x^{4}, y^{4}$ ) for $x, y \geq 0$ and in supposition $x, y>0$ it could be rewritten so: $\frac{x^{5}}{y} \leq x^{4}-y^{4}+x y^{3}$ or like this: $\frac{x^{4}}{y}+\frac{y^{4}}{x} \geq x^{3}+y^{3}$.
Exercise 5. Prove inequality for $a, b, c \geq 0$

$$
a^{3}+b^{3}+c^{3} \geq a^{2} \sqrt{ } b c+b^{2} \sqrt{ } c a+c^{2} \sqrt{ } a b
$$

Exeroise 5 . Prove inequality for $x, y, z>0$

$$
\text { a) } \frac{x^{4}}{y^{3} z}+\frac{y^{4}}{z^{3} x}+\frac{z^{4}}{x^{3} y} \geq \frac{x}{y}+\frac{y}{z}+\frac{z}{x}
$$

$$
\text { 6) } x^{4} \cdot\left(\frac{1}{y}+-\frac{1}{z}\right)+y^{4} \cdot\left(\frac{1}{x}+\frac{1}{z}\right)+z^{4} \cdot\left(\frac{1}{y}+\frac{1}{x}\right) \geq 2 \cdot\left(x^{3}+y^{3}+z^{3}\right)
$$

Exercise 7. Consider concordant pairs $\left(x^{n}, y^{n}\right) \&\left(x^{m}, y^{m}\right)$ and try to generalize inequalities appeared above.
Exercise 8. Prove for any $a, b, \alpha 0$ inequalities:
a) $\frac{a^{3}}{a^{2}+a b+b^{2}}+\frac{b^{3}}{b^{2}+b c+c^{2}}+\frac{c^{3}}{c^{2}+c a+a^{2}} \geq \frac{a+b+c}{3}$
b) $\frac{1}{a^{3}+b^{3}+a b c}+\frac{1}{b^{3}+c^{3}+a b c}+\frac{1}{c^{3}+a^{3}+a b c} \leq \frac{1}{a b c}$.

## Variation 2.

Actually, this is a continuation of theme considered above, but in general form. We start as before, from Cauchy inequality.
Definition 1 . For any non-negative $a_{1}, a_{2}, \ldots, a_{n}$ the values $\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}$ \& $\sqrt[n]{a_{1} a_{2} \ldots a_{n}}$ are called arithmetic average and geometric average respectively If $a_{1}, \ldots, a_{n}>0$, then the value $\frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}}$ is called harmonic average. The value $G_{p}=\left(\frac{a_{1}^{p}+\ldots+a_{z}^{p}}{n}\right)^{1 / p}$ for any $p \neq 0$ called degree average of p-degree.
Prove that $\lim _{p \rightarrow 0} G_{p}=\sqrt[n]{a_{1} a_{2} \cdots a_{n}}$ and therefore the notation $G_{0}$ is suitable for geometric average since $G_{0}=\underset{p \rightarrow 0}{\lim } G_{p}$.
Proof:
Denote $\frac{a_{1}^{p}+\ldots+a_{n}^{p}}{n}-1$ by $S_{p}$. Obviously, $\lim _{p \rightarrow 0} S_{p}=0$.
Find $\lim _{p \rightarrow O} \frac{S_{p}}{P}$. We have $\frac{S_{p}}{P}=\frac{1}{n} \cdot\left(\frac{a_{1}^{P}-1}{p}+\ldots+\frac{a_{n}^{P}-1}{p}\right)$. Since $\lim _{t \rightarrow 0} \frac{a^{t}-1}{t}=\ln a$, for any $a>0 \& a^{\neq 1}$, then $\lim _{p \rightarrow 0} \frac{S_{p}}{p}=\frac{\ln a_{1}+\ln a_{2}+\ldots+\ln a_{n}}{n}=\ln \sqrt[n]{a_{1} a_{2} \ldots a_{n}}$ Then $\lim _{p \rightarrow 0} G_{p}=\lim _{p \rightarrow 0}\left(\left(1+S_{p}\right)^{1 / S_{p}}\right)^{S_{p} / P}=\left(\lim _{S \rightarrow 0}\left(1+\frac{1}{S}\right)^{s}\right)^{\operatorname{Li} \rightarrow 0} \frac{S_{p}}{p}=e^{\ln \sqrt[n]{a_{1} a_{2} \cdots a_{n}}}$ $=\sqrt[n]{a_{1} a_{2} \ldots a_{n}}$. We leave to prove $\lim _{t \rightarrow 0} \frac{a^{t}-1}{t}=\ln$ a. Since $\lim _{s \rightarrow 0}(1+s)^{1 / s}=e$, then $\lim _{s \rightarrow 0} \frac{\ln (1+s)}{s}=1$. By notation $\ln (1+s)=t$, we get $\lim _{s \rightarrow 0} t=0$ and $s=e^{t}-1$. Hence, $\lim _{s \rightarrow 0} \frac{s}{\ln (1+s)}=\lim _{t \rightarrow 0} \frac{e^{t}-1}{t}=1$ and it follows $\lim _{t \rightarrow 0} \frac{a^{t}-1}{t}=\lim _{t \rightarrow 0} \frac{e^{\ln a^{t}}-1}{t \cdot \ln a}=\ln a \cdot \lim _{t \rightarrow 0} \frac{e^{i \cdot \ln a}-1}{t \cdot \ln a}=\ln a \cdot 1=\ln a$

The word "average" present here because for any $p$ : $\min \left\{a_{1}, a_{2}, \ldots, a_{r_{1}}\right\} \leq G_{p} \leq \max \left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Prove it by yourself. When $n=2$ we have follows chain of inequalities:
$\frac{2 a b}{a+b} \leq \sqrt{ } a b \leq \frac{a+b}{2} \leq \sqrt{\frac{a^{2}+b^{2}}{2}}$
or as we ve noted $G_{-1} \leq G_{0} \leq G_{1} \leq G_{2}$.
We are going to transfer those inequalities to cases with more variables. First of all we concentrate on central part of this chain.
In general case inequality $G_{0} \leq G_{1}$ is to be said Cauchy inequality and it could be written so:

$$
\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} \ldots a_{n}}
$$

Easy to prove inequality for particular cases $n=4 \& n=3$. Here very important the order because in the proof of Cauchy inequality in this cases we use simple but important jideas.
$n=4 \cdot \frac{a_{1}+a_{2}+a_{3}+a_{4}}{4}=\frac{\frac{a_{1}+a_{2}}{2}+\frac{a_{2}+a_{3}}{2}}{2} \geq \frac{\sqrt{a_{1} a_{2}}+\sqrt{a_{3} a_{4}}}{2} \geq \sqrt{\sqrt{a_{1} a_{2} \cdot \sqrt{a_{3} a_{4}}} \geq \sqrt{a_{1} a_{2} a_{3} a_{4}}}$
$n=3 . \frac{a_{1}+a_{2}+a_{3}}{3}=\frac{4}{3} \cdot\left(a_{1}+a_{2}+a_{3}\right) \cdot \frac{1}{4}=\frac{a_{1}+a_{2}+a_{3}+\frac{a_{1}+a_{2}+a_{3}}{3}}{4} \geq \sqrt[4]{a_{1} a_{2} a_{3} \cdot \frac{a_{1}+a_{2}+a_{3}}{3}}$
by Cauchy uneqaulity for $n=4$. By straightforward division by
$\sqrt[4]{\frac{a_{1}+a_{2}+a_{3}}{3}}$ we get $\left(\frac{a_{1}+a_{2}+a_{3}}{3}\right)^{3 / 4} \geq\left(a_{1} a_{2} a_{3}\right)^{1 / 4} \Leftrightarrow \frac{a_{1}+a_{2}+a_{3}}{3} \geq \sqrt[3]{a_{1} a_{2} a_{3}}$
It's possible another proof of Cauchy inequality when $n=3$ by using inequality $x^{3}+y^{3} \geq x^{2} y+x y^{2}$. Actually,
$x^{3}+y^{3}+z^{3}=\frac{x^{2} y+x y^{2}}{2}+\frac{y^{2} z+y z^{2}}{2}+\frac{z^{2} x+z x^{2}}{2} \geq x y z+x y z+x y z=3 x y z$.
By setting $x=\sqrt[3]{a_{1}}, y=\sqrt[3]{a_{2}}, z=\sqrt[3]{a_{3}}$ we obtain $\frac{a_{1}+a_{2}+a_{3}}{3} \geq \sqrt[3]{a_{1} a_{2} a_{3}}$
Notice that from inequality $G_{1} \geq G_{0}$ for any $n$ it immediately follows $G_{0} \geq G_{-1}$ for positive numbers (to do it is sufficient to use Cauchy inequality for numbers $\frac{1}{a_{1}}, \frac{1}{a_{2}}, \ldots, \frac{1}{a_{n}}$ ). We shall stay by inequality $G_{2} \geq G_{1}$.

For $n=4$ we ve $\sqrt{\frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}}{4}}=\sqrt{\frac{\left(\sqrt{\frac{a_{1}^{2}+a_{2}^{2}}{2}}\right)^{2}+\left(\sqrt{\frac{a_{3}^{2}+a_{4}^{2}}{2}}\right)^{2}}{2} \geq \frac{\sqrt{\frac{a_{1}^{2}+a_{2}^{2}}{2}}+\sqrt{\frac{a_{3}^{2}+a_{4}^{2}}{2}}}{2}}$ $\geq \frac{\frac{a_{1}+a_{2}}{2}+\frac{a_{3}+a_{4}}{2}}{2}=\frac{a_{1}+a_{2}+a_{3}+a_{4}}{4}$. So, we obtain the inequality:

$$
\sqrt{\frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}}{4}} \geq \frac{a_{1}+a_{2}+a_{3}+a_{4}}{4}
$$

For $n=3$ inequality $G_{z} \geq G_{1}$ we could prove directly by squaring the both of inequality sides:
$\sqrt{\frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}{3}} \geq \frac{a_{1}+a_{2}+a_{3}}{3} \Leftrightarrow 3 \cdot\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right) \geq\left(a_{1}+a_{2}+a_{3}\right)^{2} \Leftrightarrow a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \geq$
$\geq a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1} \Leftrightarrow \frac{a_{1}^{2}+a_{2}^{2}}{2}+\frac{a_{2}^{2}+a_{3}^{2}}{2}+\frac{a_{3}^{2}+a_{1}^{2}}{2} \geq a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1}$.
But we shall show that this inequality we can prove by the way we ve proved above for $n=4$ - by repeating way we ve used in proof of Cauchy inequality for $n=3$ from inequality for $n=4$. This way in what follows we call by reveres step.
Let $G_{2}=\sqrt{\frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}{3}}$. Then, $G_{2}=\sqrt{\frac{3 \cdot G_{2}^{2}+G_{2}^{2}}{4}}=\sqrt{\frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+G_{2}^{2}}{4}} \geq \frac{a_{1}+a_{2}+a_{3}+G_{2}}{4}$ $\Leftrightarrow 4 \cdot G_{2} \geq a_{1}+a_{2}+a_{3}+G_{2} \Leftrightarrow 3 G_{2} \geq a_{1}+a_{2}+a_{3} \Leftrightarrow G_{2} \geq G_{1}$.
Follows two exercises allows us convince once again in effective ideas of doubling and reverse step.
Exeraise 9. Prove inequalities:
a) $\frac{\sin \alpha+\sin \beta}{2} \leq \sin \frac{\alpha+\beta}{2}$
b) $\frac{\sin \alpha_{1}+\sin \alpha_{2}+\sin \alpha_{3}+\sin \alpha_{4}}{4} \leq \sin \frac{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}}{4}$
c) $\frac{\sin \alpha_{1}+\sin \alpha_{2}+\sin \alpha_{3}}{3} \leq \sin \frac{\alpha_{1}+\alpha_{2}+\alpha_{3}}{3}$

Exeroise 10. Prove the truth of unequalities:
a) $\sin \alpha \cdot \sin \beta \leq \sin ^{2} \frac{\alpha+\beta}{2}$
b) $\sin \alpha_{1} \cdot \sin \alpha_{2} \cdot \sin \alpha_{3} \cdot \sin \alpha_{4} \leq \sin ^{4} \frac{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}}{4}$
o) $\sin \alpha_{1} \cdot \sin \alpha_{2} \cdot \sin \alpha_{3} \leq \sin ^{3} \frac{\alpha_{1}+\alpha_{2}+\alpha_{3}}{3}$

Exercise 11 . Prove for any positive numbers $a, b, c$ inequality: $(a+b+c) \cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq 9 \quad$ (it's desirable to do it by inequality $\frac{a+b}{2} \geq \sqrt{a b}$, no using $G_{1} \geq G_{0}$ for three numbers).
Exercise 12. Prove for any posjtive $a, b, c$
a) $\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{a+c}{b}} \geq 3 \sqrt{2}$.
b) $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \leq \frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}$

Exercise tz. Prove for any non-negative $a, b, c$

$$
a^{3}+b^{3}+c^{3} \leq 2 \cdot(a+b+c) \cdot\left(a^{2}+b^{2}+c^{2}\right)
$$

Eseroise 14. Prove that for any triangle does hold inequality $5 \geq 3 \sqrt{3} \cdot r^{2}$ where $S$ is area of this triangle and $r$ is radius of insoribed circle into triangle. When does equality hold?

Exeroise 25 . Let $h_{a}, h_{b}, h_{c}$ are height of triangle dropped to the sides $a, b, o$ respectively and $d_{a}, d_{b}, d_{c}$ are distance from arbitrary point inside triangle to its sides $a, b, c$ respectively. Prove that

$$
h_{a} h_{b} h_{c} \geq 27 \cdot d_{a} d_{b} d_{c}
$$

When does equality hold?
Exercise ib. Find out what $s$ greater:
a) $2 \cdot \sqrt[4]{0.9}+\sqrt[4]{1.05}+\sqrt[4]{1.1}$ or 4 .
b) $\sqrt[4]{1.2}+\sqrt[4]{1.2}+\sqrt[4]{0.8}+2 \cdot \sqrt[4]{0.95}$ or 5 .
c) $\log _{4} 5+\log _{5} 6+\log _{6} 7+\log _{7} 8$ or 4.4

As lang as in further we shall frequently use mathematic induction method then in follows exercises we offer to reader perform uncomplicated but of course useful work to get some very important inequalities.
Those inequalities in further will iurn out as a particular cases of some generalized inequalities. You can ask here: why don't we prove some general
theorems and drop particular cases ? Wouldn't it be easy $?$ The answer to this
question is "yes" if the main point of this article would be a general
results as it sccur in mathematic science articles. However the main point of this article is not only concrete results. But what is more important here is to show appearance and developments of ideas, their interaction and correlations and different performance technic. Moreover, its
desirable that notwithstanding with preparation, just aspiration to master on this very interesting region of mathematics knowledge would turn out as a decisive factor which is defined the resoluteness of work with this article).

Exercise 17. Prove for any natural number $n$ and real $x>-1$ truth of follows inegualities:
a) $(1+x)^{n} \geq 1+n \cdot x$ (induction by $n$ ).
b) $(1+x)^{1-n} \leq 1+\frac{x}{n}$.

When is equality possible ?
Exercise 18.
a) Let $s, t>0$ \& $s+t=1$. Prove that for any natural number $n$ inequality $s^{n}+t^{n} \geq \frac{1}{2^{n-i}}$ (induction by $n$ ). When is equality possible ?
b) Prove that $\left(\frac{a^{n}+b^{n}}{2}\right)^{n} \geq \frac{a+b}{2}$ for $a, b \geq 0$.
(Hint. Assume $s=\frac{a}{a+b} \& t=\frac{b}{a+b}$ for $a, b>0$ from exercise 12).
Exercise 19. Prove inequalities:
a) $\left(\frac{a_{1}^{n}+a_{2}^{n}+a_{3}^{n}+a_{4}^{n}}{4}\right)^{1 / n} \geq \frac{a_{1}+a_{2}+a_{3}+a_{4}}{4}$
b) $\left(\frac{a_{1}^{r_{i}}+a_{2}^{n}+a_{3}^{n}}{3}\right)^{1 / n} \geq \frac{a_{1}+a_{2}+a_{3}}{3}$ (Use reverse step).

We are going to prove Cauchy's inequality (general oase) and we shall do that by several different ways and each one has special interest.

Theorem 1 . For any non-negative numbers $a_{1}, a_{2}, \ldots, a_{n}$ holds inequality

$$
\begin{equation*}
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} \ldots a_{n}} \tag{8}
\end{equation*}
$$

which becomes an equality only if $a_{1}=a_{2}=\ldots=a_{n}$.
Proof: (induction by $n$.

1. Base. When $n=2$ the theorem is true as we ve proved.
2. Induction.

Suppose that for any $2 \leq k<n$ and any set of $k$ non-negative numbers
$b_{1}, b_{2}, \ldots, b_{k}$ holds inequality $\frac{b_{1}+b_{2}+\ldots+b_{k}}{k} \geq \sqrt[k]{b_{1} b_{2} \ldots b_{k}}$ and an
equality holds only when $b_{1}=b_{z}=\ldots=b_{k}$. Prove that for arbitrary set of $k$ non-negative numbers $a_{1}, a_{2}, \ldots, a_{n}$ holds inequality ( 8 ).
Consider two cases:

1. $n=2 \cdot m$, then $m<n$ and by supposition of induction when $k=m$ and by base we get
$\frac{a_{1}+a_{2}+\ldots+a_{2 m}}{2 m}=\frac{\frac{a_{1}+a_{2}+\ldots+a_{m}}{m}+\frac{a_{m+1}+\ldots+a_{2 m}}{m}}{2} \geq \frac{\sqrt[m]{a_{1} a_{2} \ldots a_{m}}+\sqrt[m]{a_{m+1} \ldots a_{2 m}}}{2} \geq$
$\geq \sqrt{m \sqrt{a_{1} a_{2} \cdots a_{m}} \cdot \sqrt[m]{a_{m+1} \cdots a_{2 m}}}=\sqrt[2 m]{a_{1} a_{2} \cdots a_{2 m}}$
An equality is possible if and only if $a_{1}=a_{2}=\ldots=a_{m}$ и $a_{m+1}=\ldots=a_{2 m}$ \& $\sqrt[m]{a_{1} a_{2} \cdots a_{m}}=\sqrt[m]{a_{m+1} \cdots a_{2 m}}$, and it equivalents $a_{1}=a_{2}=\ldots=a_{2 m}$.
2. $n=2 \cdot m-1$. But $n+1=2 m$ \& $m<n$. Then by supposition considered before $1-s t$ case holds inequality (8) for the set of $2 m$ numbers $a_{1}, a_{2}, \ldots, a_{n}, \frac{a_{1}+a_{2}+\ldots+a_{n}}{n}$

Denote $\quad S=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}$, we get
$S=\frac{n \cdot S_{1}+B}{n+1}=\frac{a_{1}+a_{2}+\ldots+a_{n}+S}{n+1} \geq \sqrt[n+1]{a_{1} a_{2} \ldots a_{n} \cdot b} \Leftrightarrow S^{n+1} \geq a_{1} a_{2} \ldots a_{n} \cdot S \Leftrightarrow$
$\Leftrightarrow S \cdot\left(S^{n}-a_{1} a_{2} \ldots a_{n}\right) \geq 0$. If at least one of numbers $a_{1}, \ldots, a_{n}$ more then 0 , then $S>0$ and we get $S^{n} \geq a_{1} a_{2} \ldots a_{n} \Leftrightarrow s \geq \sqrt[n]{a_{1} a_{2} \cdots a_{n}}$, and an equality
holds if and only if $a_{1}=a_{2}=\ldots=a_{n}=\xi \Leftrightarrow a_{1}=a_{2}=\ldots=a_{n}$.
Theorem is proved.
Exersice 20. Prove inequalities for positive numbers $a_{1}, a_{2}, \ldots, a_{n}$ :
a) $\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+\ldots+\frac{a_{n}}{a_{1}} \geq n$
b) $\sqrt[n]{a_{1} a_{2} \ldots a_{n}} \geq \frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}} \quad\left(G_{0} \geq G_{{ }_{-1}}\right)$
c) $\left(a_{1}+a_{2}+\ldots a_{n}\right) \cdot\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right) \geq n^{2}$.

Exercise $2_{1}^{*}$. For non-negative numbers $x_{1}, x_{2}, \ldots, x_{n}$ prove inequality

$$
\left(1+x_{1}\right) \cdot\left(1+x_{2}\right) \cdot \ldots \cdot\left(1+x_{n}\right) \geq\left(1+\sqrt[n]{x_{1} x_{2} \cdots x_{n}}\right)^{n}
$$

Exercise 2 . For any natural number $n$ prove follows inequalities
a) $n: \leq\left(\frac{n}{z}+1\right)^{n-1}$
b) ${ }^{n} \sqrt{n}-1 \leq \frac{2}{\sqrt{n}}$
c) $n \cdot \sqrt[n]{n+1}-1 \leq 1+\frac{1}{2}+\ldots+\frac{1}{n} \leq 1+n \cdot\left(1-\frac{1}{n^{\prime} n}\right.$ )
d) $\left(1+\frac{1}{4}\right) \cdot\left(1+\frac{1}{8}\right) \cdot \ldots \cdot\left(1+\frac{1}{2^{n}}\right)<2$

Exeroise 23. Let $f(n)=\left(1+\frac{1}{n}\right)^{n} \& g(n)=\left(1+\frac{1}{n}\right)^{n+1}$. Prove that for any $n \geq 1: f(n+1)>f(n) \& g(n+1)>g(n)$.

Theorem 2 . (Ellers). Let $n$ positive numbers $x_{1}, x_{2}, \ldots, x_{n}$ satisfy the condition $x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}=1$, then $x_{1}+x_{2}+\ldots+x_{n} \geq n$, and an equality holds if and only if $x_{1}=x_{2}=\ldots=x_{n}$.

Proof. (Induction by $n$ ):

1. Base. $n=2 ; x_{1}, x_{2}>0 \& x_{1} x_{2}=1$, then $x_{1}+x_{2} \geq 2 \Leftrightarrow x_{1}+x_{2} \geq 2 \sqrt{x_{1} x_{2}} \Leftrightarrow$ $\left(\sqrt{x}_{i}-\sqrt{x}_{2}\right)^{2} \geq 0$.
2. Induction Suppose that the theorem is true for any $n \geq 2$. We re going to prove that the theorem is true for $n+1$. So, let $x_{1}, x_{2}, \ldots, x_{n+1}>0$ \& $x_{1} x_{2} \ldots x_{n} x_{n+1}=1$. Here is impossible that all $x_{i}>1$. Therefore, we can find two numbers such that one of them greater than unity and another smaller than unity. In what follows we shall suppose that $x_{n} \leqslant 1 \& x_{n+1} \geq 1$. (Always we can denote numbers $x_{1}, x_{2}, \ldots, x_{n+1}$ so that exactly two of last numbers would satisfy such condition. Then for set of $n$ numbers $x_{1}, x_{2}, \ldots, x_{n-1}, x_{n} x_{n+1}$ the theorem is true, i.e. $x_{1} \cdot x_{2} \ldots\left(x_{n} x_{n+1}\right)$
it follows that
$x_{1}+x_{2}+\ldots+x_{n-1}+x_{n} \cdot x_{n+1} \geq n \Leftrightarrow x_{1}+x_{2}+\ldots+x_{r-1}+x_{n}+x_{n+1} \geq$
$\geq n+1-\left(1-x_{n}-x_{n+1}+x_{n} \cdot x_{n+1}\right) \Leftrightarrow x_{1}+x_{2}+\ldots+x_{n}+x_{n+1} \geq n+1-\left(1-x_{n}\right) \cdot\left(1-x_{n+1}\right)$.
But $\left(1-x_{n}\right) \cdot\left(1-x_{n+1}\right) \leq 0$. Therefore, $n+1-\left(1-x_{n}\right) \cdot\left(1-x_{n+1}\right) \geq n+1$.
Thus, finally we get $\quad x_{1}+x_{2}+\ldots+x_{n}+x_{n+1} \geq n+1$.
Let $x_{1}+x_{2}+\ldots+x_{n+1}=n+1 \Rightarrow n+1-\left(1-x_{n}\right) \cdot\left(1-x_{n+1}\right)=n+1 \Leftrightarrow\left[\begin{array}{l}x_{n}=1 \\ x_{n+1}=1\end{array}\right.$.
Suppose that $x_{n+1}=1$, then $x_{1}+x_{2}+\ldots+x_{n}=n$ and it means that by supposition of induction $x_{1}=\ldots=x_{n}=1=x_{n+1}$. Theorem is proved.
Cauchy's inequality ( 8 ) we could get as the simple corollary from Theorem 2 . Let $a_{1}, a_{2}, \ldots, a_{n}>0$ then by notation $\sqrt[n]{a_{1} a_{2} \ldots a_{n}}$ by $p$ we get for numbers $\frac{a_{1}}{p}, \frac{a_{2}}{p}, \ldots, \frac{a_{n}}{p}$ inequality $\quad \frac{a_{1}}{p}+\frac{a_{2}}{p}+\ldots+\frac{a_{n}}{p} \geq n$, i.e. $\frac{a_{1}}{p} \cdot \frac{a_{2}}{p} \cdot \ldots \cdot \frac{a_{n}}{p}=$ $=\frac{a_{1} \cdot a_{2} \cdot \ldots a_{n}}{p^{n}}=1$. Hence, $\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \geq$ p. If $\frac{a_{1}}{p}=\frac{a_{2}}{p}=\ldots=\frac{a^{\prime}}{p}=1$. i.e.
when $a_{1}=a_{z}=\ldots=a_{p}$ the inequality turns to equality and only in this case.
Exercise $24^{*}$. Let $f(x)=a \cdot x^{2}+b \cdot x+c, a, b, c>0 \& a+b+c=1$. Prove that for any $n$ positive numbers $x_{1}, x_{2}, \ldots, x_{n}$ such that $x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}=1$ holds inequality:

$$
f\left(x_{1}\right) \cdot f\left(x_{2}\right) \cdot \ldots \cdot f\left(x_{n}\right) \geq 1
$$

And equality is possible if only if $x_{1}=x_{2}=\ldots=x_{n}$ (Hint. Prove indentity $f\left(x_{1}\right) \cdot f\left(x_{2}\right)=f\left(x_{1} x_{2}\right)-a b \cdot x_{1} x_{2} \cdot\left(1-x_{1}\right) \cdot\left(1-x_{2}\right)-b c \cdot\left(1-x_{1}\right) \cdot\left(1-x_{2}\right)-a c \cdot\left(1-x_{1}^{2}\right) \cdot\left(1-x_{2}^{2}\right)$ for any positive $\mathrm{x}_{1}$ and $\mathrm{x}_{2}$ ).
Exercise 25. For any set of positive numbers $a_{1}, a_{2}, \ldots, a_{n}$ prove inequality:

$$
\frac{a_{1}-a_{3}}{a_{2}+a_{3}}+\frac{a_{2}-a_{4}}{a_{3}+a_{4}}+\ldots+\frac{a_{n-2}-a_{n}}{a_{n+1}+a_{n}}+\frac{a_{n-1}-a_{1}}{a_{n}+a_{1}}+\frac{a_{n}-a_{2}}{a_{1}+a_{2}} \geq 0
$$

Consider next problems. Find the greatest value of product $x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}$ if $x_{1}+x_{2}+\ldots x_{n}=a>0 \& x_{1}, x_{2}, \ldots, x_{n} \geq 0$.
By Cauchy's inequality $\frac{a}{n} \geq \sqrt[n]{x_{1} x_{2} \cdots x_{n}}$ and the upper bound $\frac{a}{n}$ for $\sqrt[n]{x_{1} x_{2} \ldots x_{n}}$ could be reached when $x_{1}=x_{2}=\ldots=x_{n}=\frac{a}{n}$. Thus, the greatest value of $x_{1} x_{2} \ldots x_{n}$ is equal to $\left(\frac{a}{n}\right)^{n}$.
What would we do if we couldn't know the Cauchy's inequality ? But we still have to solve the problem and suppose that we already have solved it.
Then, obviously that Cauchy's inequality would be a corollary from this problem and we 'd have one more way to prove Cauchy's inequality. So matter is to solve set above problems without using Cauchy s inequality.
Denote by $f_{n}(a)$ the greatest value of product $x_{1} x_{2} \ldots x_{n}$ over all ordered sets ( $x_{1}, x_{2}, \ldots, x_{n}$ ) of real numbers such that $x_{1}, x_{2}, \ldots, x_{n} \geq 0$ \& $x_{1}+x_{2}+\ldots+x_{n}=a$. The set of such sets we shall note by $D_{n}(a)$. The correspondence $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(t x_{1}, t x_{2}, \ldots, t x_{n}\right)$ between sets $D_{n}(a) \& D_{n}(t a)$ is single-valued. Therefore, $f_{n}(t a)=t^{n} \cdot f_{n}(a)$.
Really, any set from $D_{n}$ (ta) we can rewrite like this ( $t x_{1}, t x_{2}, \ldots, t x_{n}$ ), where $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in D_{n}(a)$ and it follows

$$
f_{n}(t a)=\max \left(t x_{1}\right) \cdot\left(t x_{2}\right) \cdot \ldots \cdot\left(t x_{n}\right)=t^{n} \cdot \max x_{1} x_{2} \cdots x_{n}
$$

where $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ gets all values from $D_{n}(a)$.
Hence, $f_{n}(t a)=t^{n} \cdot f_{n}(a)$, and in partioular, $\quad f_{n}(a)=a^{n} \cdot f_{n}(1)$.
Transfor the initial system of restrictions defined $D_{n}(a)$

$$
\begin{aligned}
& \left\{\begin{array} { l } 
{ x _ { 1 } + x _ { 2 } + \ldots + x _ { n } = a } \\
{ x _ { 1 } \geq 0 , x _ { 2 } \geq 0 , \ldots , x _ { n } \geq 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { l } 
{ x _ { 1 } + x _ { 2 } + \ldots + x _ { n - 1 } = a - x _ { n } } \\
{ x _ { 1 } , x _ { 2 } , \ldots , x _ { n - 1 } \geq 0 } \\
{ 0 \leq x _ { n } \leq a }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\frac{x_{1}}{a}+\frac{x_{2}}{a}+\ldots+\frac{x_{n}}{a}=1-\frac{x_{n}}{a} \\
x_{1}, x_{2}, \ldots, x_{n-1} \geq 0 \\
0 \leq \frac{x_{n}}{a} \leq 1
\end{array} \Leftrightarrow\right.\right.\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
0 \leq s<1 \\
s_{1}+s_{2}+\ldots+s_{n-1}=s \\
s_{1}, s_{2}, \ldots, s_{n-1} \geq 0 \\
x_{i}=a s_{i}, i=1,2, \ldots, n-1 \\
x_{n}=a(1-s)
\end{array}\right. \text {. Then, }
\end{aligned}
$$

$$
\begin{aligned}
& =\max _{s \in[0,1]}\left\{a^{n}(1-s) \cdot \max s_{1} s_{2} \ldots s_{n-1}\right\}=a^{n} \cdot \max _{\in, 11}(1-s) \cdot f_{n-1}(s)= \\
& \left.=a^{n} \cdot \max _{6}\{1]^{(1-s)} \cdot s^{n-1} \cdot f_{n-1}(1)\right\}=a^{n} \cdot f_{n-1}(1) \cdot \max _{s, 1]}(1-s) \cdot s^{n-1} . \\
& \text { So, now our problem is to find a greatest value of function }
\end{aligned}
$$

$h(s)=(1-s) \cdot s^{n-1}$ onto segment $[0,1] \cdot h(s)=(n-1) \cdot s^{n-2}-n \cdot s^{n-1}=0 \Leftrightarrow\left[\begin{array}{l}s=0 \\ s=\frac{n-1}{n}\end{array}\right.$ Hence, $s \max _{\underline{D}}, h(s)=\max \left\{h(0), h(1), h\left(\frac{n-1}{n}\right)\right\}=\left(\frac{n-1}{n}\right)^{n-1} \cdot \frac{1}{n}=\frac{(n-1)^{n-1}}{n^{n}}=h\left(\frac{n-1}{n}\right)$. So, $f_{n}(1)=\frac{(n-1)^{n-1}}{n^{n}} \cdot f_{n-1}(1)$. Obviously, $f_{1}(1)=1$. Since $n^{n} \cdot f_{n}(1)=$ $=(n-1)^{n-1} \cdot f_{n-1}(1)$, then $n^{n} \cdot f_{n}(1)=1^{1} \cdot f_{1}(1) \Rightarrow f_{n}(1)=\frac{1}{n^{n}}$. Hence, $f_{n}(a)=\left(\frac{a}{n}\right)^{n}$ Thus, $x_{1} x_{2} \ldots x_{n} \leq\left(\frac{a}{n}\right)^{n}$ and equality could be reached if \& only if $x_{n}=\frac{a}{n}$. But then $x_{1} x_{2} \ldots x_{n-1} \leq\left(\frac{a}{n}\right)^{n-1}$ and since $x_{1} x_{2} \ldots x_{n-1}=a \cdot \frac{n-1}{n}=a_{1}$, then, $x_{1} x_{2} \ldots x_{n-1} \leq\left(\frac{a_{1}}{n-1}\right)^{n_{1}-1}$ and $x_{n \cdots 1}=\frac{a_{1}}{n-1}=\frac{a \cdot(n-1)}{n \cdot(n-1)}=\frac{a}{n}$ and so on .
(This moment you could prove by induction by $n$ ).
Cauchy's inequality by itself and also some inequalities-corollaries from its are very strong tool over many regions in mathematics on solution of problems and proof of theorems.
Assume in Cauchy's inequality $a_{1}=a_{2}=\ldots=a_{m}=1+x$, where $a_{m+1}=\ldots=a_{n}=1$, then we get:

$$
\sqrt[n]{(1+x)^{m}} \leq \frac{m \cdot(1+x)+n-m}{n}=1+\frac{m}{n} \cdot x \quad \text { or } \quad(1+x)^{m / n} \leq 1+\frac{m}{n} \cdot x .
$$

(equality is possible only if $x=0$ ). So, for any rational $r$ which is smaller than unity holds inequality

$$
(1+x)^{r} \leq 1+r \cdot x \quad(10) \text { - Bernoullis inequality }
$$

If we denote $1+x$ by $t$, then Bernoullis inequality can be written

$$
t^{r} \leq 1+r \cdot(t-1) \Leftrightarrow t^{r}-r \cdot t+r-1 \leq 0 .
$$

Let $r \in \mathbb{Q}(r-r a t i o n a l$ number $) \& r<1$, then $\frac{1}{r}<1$ and for any $s>0$ holds inequality $s^{1 / r}-\frac{1}{r} \cdot s+\frac{1}{r}-1 \leq 0$. If for any $t \geqslant 0$ instead of $s$ we substitute $t^{r}$, then we get inequality

$$
t-\frac{1}{r} \cdot t^{2}+\frac{1}{r}-1 \leq 0 \Leftrightarrow t^{r}-r \cdot t+r-1 \leq 0
$$

For any $x>-1$ instead of $t$ we substitute $x+1>0$ and we obtain inequality $(1+\mathrm{x})^{r} \geq 1+r \cdot \mathrm{x}, \quad(\mathrm{r}>1)$
Thus, we ve got two pairs of very important in applications inequalities:

$$
\begin{align*}
& (1+x)^{r} \geq 1+r \cdot x, \quad x>-1, \quad r \in \mathbb{Q} \& r>1  \tag{11}\\
& (1+x)^{r} \leq 1+r \cdot x, \quad x>-1, \quad r \in \mathbb{Q} \& 0<r<1 \tag{12}
\end{align*}
$$

(Equality in two of inequalities is possible only if $x=0$ )

```
x -r}x+r-r-1\geq0, x>0, re\mathbb{Q}&r>
x
```

(Equality in two of inequalities is possible only if $\mathrm{x}=1$ ).
Using of rational exponent is restriction which we can simply remove by some means of mathematics analysis. If we stay on conceptions of limits and continuity of exponential function, then extension inequalities (11),(12), (13), (14) on real numbers we can carry out by the same way. Sufficient to do it for anyone of them. Inequality (14) by historical causes convenient to this role as base. We shall get others as a corollary from its.

Let $\alpha$ - real number with $0<\alpha<1$. Then there exist a sequence of rational rumbers $r_{1}, r_{2}, \ldots, r_{n}, \ldots$, such that $\alpha=\lim _{n \rightarrow \infty} r_{n}$ (sequence of rational approximations of the real number $\alpha$ ) \& $0<r_{n}<1$. But then for any $n \in \mathbb{N}$ holds inequality $x^{r}{ }^{n}-r_{n} x+r_{n}-1 \leq 0$. By passage to the limits when $n \rightarrow \infty$ : $\lim _{n \rightarrow \infty}\left(x^{r}-r_{n} \cdot x+r_{n}-1\right) \leq 0 \Leftrightarrow x^{\lim _{n \rightarrow \infty} r_{n}}-x \cdot \lim _{n} r_{n}+\lim _{n \rightarrow \infty} r_{n}-1 \leq 0 \Leftrightarrow$

$$
\Leftrightarrow x^{\alpha}-\alpha \cdot x+\alpha-1 \leq 0 .
$$

But by passaging to the limits the strict inequality $x>0 \& x^{\prime} \neq$ turns to weak inequality. We have to correct it. It's easy.
Let $r$ - rational numbers, then $\alpha<r<1$ (there exist such number -
prove that between any two real numbers there exist rational number).
Then $0<\frac{\alpha}{r}<1$. Denote $\frac{\alpha}{r}$ by $\beta$. We get:
$x^{\alpha}-\alpha \cdot x+\alpha-1=\left(x^{\beta}\right)^{r}-r \cdot \beta x+r \cdot \beta-1$. Let $x^{2} 1$, then $x^{\beta} \neq 1$ and for $x^{\beta}$ and rational $0<r<1$ holds inequality $\left(x^{\beta}\right)^{r}-r \cdot \beta x+r-1<0$.

Hence, $\left(x^{\beta}\right)^{r}-r \cdot \beta x+r \cdot \beta-1<r \cdot x^{\beta}-r \cdot \beta x+r \cdot \beta-r$.
But for any real exponent $0<\beta<1$ holds inequality
$x^{\beta}-\beta \cdot x+\beta-1 \leq 0$. Therefore, finally we obtain:
$\mathrm{x}^{\alpha}-\alpha \cdot \mathrm{x}+\infty-1<x \cdot\left(\mathrm{x}^{\beta}-\beta \cdot x+\beta-1\right) \leq 0$. What's needed to prove.
By involving powerful means of analysis - derivatives we d sharply reduce technical work, but this economy is under sign of question since a lot of theory representing this possibilities suggest to spend enormous efforts that make sense only if the work on mastering this theory already has done well. And the goal of its using does not restrict one problem. Suppose that last condition is true, then we re going to prove inequality

$$
x^{\alpha}-\alpha \cdot x+\alpha-1 \leq 0 \quad \text { for } \quad x>0 \& 0<\alpha<1
$$

Consider function $f(x)=x^{\alpha}-\alpha \cdot x+\infty-1 \Rightarrow f^{\prime}(x)=\alpha \cdot x^{\alpha-1}-\alpha$.
Equation $f(x)=0 \Leftrightarrow x^{a-1}-1=0$ has a unique solution: $x=1$.
For $0<x<1 \quad x^{\alpha-1}-1>0$, and for $x>1 \quad x^{\infty-1}-1<0$ since $0<\alpha<1$. Therefore when $x=1$ $f(x)$ reach the maximum $f(1)=0$ and it means that for any $x>0$

$$
x^{\infty}-\infty \cdot x+\infty-1 \leq 0,
$$

and the equality occur only if $x=1$.

So we have for now four following inequalities:

$$
\begin{array}{ccc}
(1+x)^{\alpha} \geq 1+\alpha \cdot x, & x>-1 \& \alpha>1 & \text { equality occur if } x=0 \\
(1+x)^{\alpha} \leq 1+\alpha \cdot x, & x>-1 \& 0<\alpha<1 & \text { (16) } \\
x^{\alpha-\alpha \cdot x+\alpha-1 \geq 0,} & x>0 \& \alpha>1 & \text { equality ocour if } x=1
\end{array}
$$

Exeroise 26. a) Prove Holder s inequalities

$$
\begin{aligned}
& s^{1 / p} \cdot t^{1 / q} \leq \frac{s}{p}+\frac{t}{q}, p>1 \quad \& \quad \frac{1}{p}+\frac{1}{q}=1 \\
& s^{1 / p} \cdot t^{1 / q} \geq \frac{s}{p}+\frac{t}{q}, 0<p<1 \quad \& \quad \frac{1}{p}+\frac{1}{q}=1 \quad s, t>1
\end{aligned}
$$

Hint. In inequalities 17 \& 18 make substitutions $x=\frac{b}{t}, p=\frac{1}{\alpha}, q=\frac{1}{1-\alpha}$.
b) prove inequalities and find out when ocour equality:

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i} y_{i} \leq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p} \cdot\left(\sum_{i=1}^{n} y_{i}^{q}\right)^{1 / q}, \frac{1}{p}+\frac{1}{q}=1, p>1 \\
& \sum_{i=1}^{n} x_{i} y_{i} \geq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p} \cdot\left(\sum_{i=1}^{n} y_{i}^{q}\right)^{1 / q}, \frac{1}{p}+\frac{1}{q}=1,0<p<1
\end{aligned}
$$

variables $x_{1}, x_{2}, \ldots, x_{n}$ \& $y_{1}, y_{2}, \ldots, y_{n}$ are non-negative; in second inequality $y_{1}, y_{2}, \ldots, y_{n}>0 \quad$ since $\quad q=\frac{p}{p-1}<0$.
(Hint. In Holder s inequalities assume: $\delta_{i}=\frac{x_{i}^{p}}{\sum_{i=1} x_{i}^{p}}, t=\frac{y_{i}^{q}}{\sum_{i=1}^{q} y_{i}^{q}}, i=1, \ldots n$ )
Those inequalities as well are aalling by generalized Gelder s inequalities.
c) Prove Minkovsky s inequalities Find out when equality occur.

$$
\begin{aligned}
& \left(\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n} y_{i}^{p}\right)^{1 / p}, \text { if } p>1 \\
& \left(\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{p}\right)^{1 / p} \geq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n} y_{i}^{p}\right)^{1 / p}, \quad \text { if } 0<p<1 .
\end{aligned}
$$

Hint. Use indentitr

$$
\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{p}=\sum_{i=1}^{n} x_{i} \cdot\left(x_{i}+y_{i}\right)^{p-1}+\sum_{i=1}^{n} y_{i} \cdot\left(x_{i}+y_{i}\right)^{p-1}
$$

And use to each one of sums in right side the senenalized Gelder s ineguality with exponenta p \& $\mathrm{q}, \mathrm{q}=\frac{\mathrm{p}}{\mathrm{p}-1}$.

The inequalities from exercise 26 are very important in mathematics. As regard Minkovsky s inequality is an object for another talking about gereralization of distance concept.

Let $t_{1} 8 t_{z}$ - positive real numbers, then substitution $x=\frac{t_{1}}{t_{2}}$ into inequality (18) yields:

$$
\left(\frac{t_{1}}{t_{2}}\right)^{\alpha}-\alpha \cdot \frac{t_{1}}{t_{2}}+\alpha-1 \leq 0 \quad \Longleftrightarrow \quad t_{1}^{\infty} \cdot t_{2}^{\alpha-1}-\alpha \cdot t_{1}-(1-\infty) \cdot t_{2} \leq 0
$$

And equality ocour only if $t_{1} t_{2}=1 \Leftrightarrow t_{1}=t_{2}$
Assume $\alpha_{1}=\alpha \& \alpha_{z}=1-\alpha$, and in last inequality we get that for any $t_{1}, t_{2}>0$ $\& \alpha_{1}, \alpha_{2} \geq 0 \& \alpha_{1}+\alpha_{2}=1$ holds inequelity:

$$
\begin{equation*}
t_{1}^{\alpha_{1}} \cdot t_{2}^{\alpha_{2}} \leq \alpha_{1} \cdot t_{1}+\alpha_{2} \cdot t_{2} \tag{19}
\end{equation*}
$$

Equality ooour ondy if $t_{i}=t_{2}$.
Theorem 3 . For any numbers $x_{1}, x_{2}, \ldots, x_{n} \geq 0 \& \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \geq 0$ such that $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}=1$ holds inequality:

$$
\begin{equation*}
\alpha_{1}^{\alpha_{1}} \cdot x_{2}^{\alpha_{2}} \ldots \cdot x_{n_{1}}^{\alpha_{n}} \leq \alpha_{1} \cdot x_{1}+\alpha_{2} \cdot x_{2}+\ldots+\alpha_{n} \cdot x_{n} \tag{20}
\end{equation*}
$$

(Equality ocour only if $x_{1}=x_{2}=\ldots=x_{n}$ ).
Numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are calling weights.
Numbers $\alpha_{1} \cdot x_{2}+\alpha_{2} \cdot x_{2}+\ldots+\alpha_{n} \cdot x_{n} \& x_{1}{ }^{1} \cdot x_{2} \alpha_{2} \ldots x_{n}^{\alpha_{n}}$ called weighted arithmetio and geometric average respectively.

Proof: (induction by n).

1. Base. We already have this (this is inequality (19)).
2. Induction. Suppose that the theorem is true for any nez and we have to prove that the theorem is true for $n+1$.

Let $x_{1}, x_{2}, \ldots, x_{r_{1}+1} \geq 0 \& \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+1} \geq 0 \& \alpha_{1}+\alpha_{2}+\ldots \alpha_{n}=1$.
Suppose that $x_{n+1} \neq 0$, since otherwise we obviously have the induction. Therefore,

$$
\frac{\alpha_{1}}{1-\alpha_{n+1}}+\frac{\alpha_{2}}{1-\alpha_{n+1}}+\ldots+\frac{\alpha_{n}}{1-\alpha_{n+1}}=\frac{\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}}{1-\alpha_{n+1}}=\frac{1-\alpha_{n+1}}{1-\alpha_{n+1}}=1
$$

llse consequently inequality (19) (The Base of induction) to numbers $x_{n+1},\left(x_{i}^{1} \ldots x_{n}^{\alpha_{n}}\right)^{\frac{1}{1-\alpha_{n+1}}}$ with weights $\alpha_{n+1} \& 1-\alpha_{n_{1+1}}$ and supposition of induction to numbers $x_{1}, x_{2}, \ldots, x_{n}$ with weights $\frac{\alpha_{1}}{1-x_{n+1}}, \ldots, \frac{x_{n}}{1-x_{n+1}}$ we get:
$x_{1}{ }^{1} \cdot x_{2}{ }^{2} \cdot \ldots \cdot x_{n}{ }^{n} \cdot x_{n+1}=x_{n+1}{ }_{n+1}^{\alpha_{n+1}} \cdot\left(\left(x_{1}{ }^{1} \cdot x_{2} \alpha_{2} \ldots \cdot x_{n}\right)^{\frac{1}{1-\alpha_{n+1}}}\right)^{1-\alpha_{n+1}} \leq \alpha_{n+1} \cdot x_{n+1}+$
$+\left(1-\alpha_{n+1}\right) \cdot x^{\frac{\alpha_{1}}{1-\alpha_{n+1}}} \cdot x^{\frac{\alpha_{2}}{1-\alpha_{n+1}} \ldots x^{\frac{\alpha_{n}}{1-\alpha_{n+1}}} \leq\left(1-\alpha_{n+1}\right) \cdot\left(\frac{\alpha_{1}}{1-\alpha_{n+1}} \cdot x_{1}+\frac{\alpha_{2}}{1-\alpha_{n+1}} \cdot x_{2}+\ldots\right.}$
$\left.+\frac{a_{n_{i}}}{1-\alpha_{n+1}} \cdot x_{n}\right)+\alpha_{n+1} \cdot x_{n+1}=\alpha_{1} x_{i}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n}$.
Equality oocur if $x_{n+1}=\left(x_{1}^{\alpha_{1}} \cdot x_{2}^{\alpha_{2}} \ldots \cdot x_{n}^{x_{n}}\right)^{1 / 1-\alpha_{n+1}} \quad \& \quad x_{1}=x_{2}=\ldots=x_{n}$, i.e. when $x_{1}=x_{2}=\ldots=x_{n+1}$.

We could prove this theorem by another way, namely as a directiy corollary from Cauchys inequality. First of all prove it for rational weights: $r_{i}, r_{z}, \ldots, r_{r_{1}}$, So, let $r_{1}, r_{2}, \ldots, r_{n}$ are non-negative rational numbers such that $r_{1}+r_{2}+\ldots+r_{n}=1$, then they could be written as fractions with the same derominator: $r_{i}=\frac{k_{i}}{m}, i=1,2, \ldots, n$ and in thje case $k_{1}+\ldots+k_{n}=m$

$$
x_{i}^{r} \cdot x_{2}^{r}{ }^{2} \ldots \cdot x_{n}^{r}=\sqrt[m]{{ }_{x_{1}}^{k_{1}} \cdot x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}} \leqslant \frac{k_{1} x_{1}+k_{2} x_{2}+\ldots+k_{n} x_{n}}{m}
$$

by Cauchy s inequality used to set of m numbers $t_{1}, t_{2}, \ldots, t_{m}$ such that $t_{1}=t_{2}=\ldots=t_{k_{1}}=x_{1}, t_{k_{1}+1}=\ldots=t_{k_{1}+k_{2}}=x_{2}, \ldots, t_{k_{1}+\ldots+k_{n-1}+1}=\ldots=t_{k_{1}+\ldots+k_{n}}=x_{n}$

Equality in the derived inequality reach only if $x_{1}=x_{2}=\ldots=x_{n}$.
From proved inequality following faot. Let $x_{i}, x_{2}, \ldots, x_{n} \geq 0$ are real numbers \& $r_{1}, r_{2}, \ldots, r_{n}>0$ are rational then holds inequality

$$
\left(x_{i}^{r_{1}} \cdot x_{2}^{r_{2}} \ldots x_{n_{1}}^{r}\right)^{\frac{1}{r_{1}+r_{2}+\ldots+r_{n}}} \leq \frac{r_{1} x_{1}+r_{2} x_{2}+\ldots+r_{n} x_{n}}{r_{1}+r_{2}+\ldots+r_{n}}
$$

Let $P_{1}, P_{2}, \ldots, P_{n}>0$ real numbers then each of $P_{i}(i=1, \ldots, n)$ is a limit of some sequence of positive rational numbers, i.e.

$$
P_{i}=\lim _{k \rightarrow \infty} r_{i k}, i=1,2, \ldots, r \text { with } r_{i k}>0 \text { for a] } k \in \mathbb{N} \text {. }
$$

Pass in irequality

$$
\left(x_{1}^{r}{ }^{r k} \cdot x_{2}^{r_{2 k}} \ldots x_{n}^{r}\right)^{\frac{1}{r_{1 k}+\ldots+r_{n k}}} \leq \frac{r_{1 k} x_{1}+r_{2 k} x_{2}+\ldots+r_{n k} x_{n}}{r_{1 k}+r_{2 k}+\ldots+r_{n k}}
$$

of a limit when $k \rightarrow \infty$ we obtain ineguality

$$
\begin{equation*}
\left(x_{1} p_{1} \cdot x_{2} p_{2} \ldots \cdot x_{n}^{p_{n}}\right)^{\frac{1}{p_{1}+\ldots+p_{n}}} \leq \frac{p_{1} x_{1}+p_{2} x_{2}+\ldots+p_{n} x_{n}}{p_{1}+p_{2}+\ldots+p_{n}} \tag{21}
\end{equation*}
$$

$p_{1}, p_{2}, \ldots, p_{n}$ as before are calling weights.
Exercise ä7.
a) Let $a, b, x, y$ are positive real numbers. Prove inequality:

$$
\left(\frac{x}{a}\right)^{a} \cdot\left(\frac{y}{b}\right)^{b} \leq\left(\frac{x+y}{a+b}\right)^{a+b}
$$

b) Let $a_{1}, a_{2}, \ldots, a_{n} \& x_{1}, x_{2}, \ldots, x_{n}$ are positive real numbers.

Prove inequality:

$$
\left(\frac{x_{1}}{a_{1}}\right)^{a_{1}} \cdot\left(\frac{x_{2}}{a_{2}}\right)^{a_{2}} \ldots\left(\frac{x_{n}}{a_{n}}\right)^{a_{n}} \leq\left(\frac{x_{1}+x_{2}+\ldots+x_{n}}{a_{1}+a_{2}+\ldots+a_{n}}\right)^{a_{1}+\cdots+a_{n}}
$$

Exercise 28. Discuss function $f(t)=\frac{(1+t)^{1+p}}{t^{p}}$, where $p>0$ on extremum.
Prove inequality

$$
\begin{equation*}
\frac{(1+p)^{p}}{p^{p}} \leq \frac{(1+t)^{1+p}}{t^{p}}, t>0 \tag{22}
\end{equation*}
$$

Equality ocour only if $t=p$.
Prove by inequality (22) the inequalities from exeroise 27. The inequality from exercise no. 23 is a base jnequality since from this inequality follows but in reverse order all inequality considered above in this part of articles.
Exeroise 29. Let numbers $a, b, c$ - length of triangle sides. Prove inequality:

$$
\left(1+\frac{b-c}{a}\right)^{a} \cdot\left(1+\frac{c-a}{b}\right)^{b} \cdot\left(1+\frac{a-b}{c}\right)^{c} \leq 1
$$



Variation 3.
Next step is consist of introduction of interesting way which we are using more than twice and therefore we can call it by parametric method.
However, actually we are talking about the method which is based on using of one or more parameters and which allows us to use some base inequalities in cases when directly using of them does not give desirable result.
Had rather to explain the essence of the method is to show how to use it in some problems.
I start from the problem which led me to an idea of using of indefinite parameters:
Find the greatest value of function:

$$
f(x, y, z)=\sqrt{4 x+1}+\sqrt{4 y+1}+\sqrt{4 z+1} \text {, если } x, y, z \geq 0 \text { и } x+y+z=1
$$

First of all I used Cauchy's inequality to expression $\sqrt{4 a+1}$ represented as $\sqrt{(4 a+1) \cdot 1}$. Then $\sqrt{4 a+1} \leq \frac{4 a+1+1}{2}=2 a+1$.

By this inequality we could get the upper bound for possible values of function $f(x, y, z)$ :

```
f(x,y,z)\leq2x+1 + 2y+1 + 2z+1=2\cdot(x+y+z)+3=5.
```

But when I noticed that equality ocour only if $x=y=z=0 \quad(4 a+1=1 \Leftrightarrow a=0)$, I understood that this way would give just unreachable upper bound for values of function $f(x, y, z)$, since the conditions $x+y+z=1$ and $x=y=z=0$ are uncompatible. Therefore I denied to use Cauchy"s inequality and I went on another way, namely I ve used inequality:
$\left(\frac{a^{2}+b^{2}+c^{2}}{3}\right)^{1 / 2} \geq \frac{a+b+c}{3}$, where $a=\sqrt{4 x+1}, b=\sqrt{4 y+1}, c=\sqrt{4 z+1}$. Then $\left(\frac{f(x, y, z)}{3}\right)^{2} \geq \frac{4 x+1+4 y+1+4 z+1}{3}=1+\frac{4}{3} \cdot(x+y+z)=\frac{7}{3} \Leftrightarrow f^{2}(x, y, z) \leq 21 \Leftrightarrow$ $\Leftrightarrow f(x, y, z) \leq \sqrt{ } 21$, and equality ocour if $x=y=z=\frac{1}{3}$.
However, finishing with this problem I went back to the Cachy s inequality $\frac{a+b}{2} \geq \sqrt{a b}$. Since this problem was offered on region mathematic olympiad then as 1 thought this problem shomld be solved as moch as possible by acanty means. As I underetand the Cauchy's inequality is completely atisties demands moreover, that the function's form pushes me to this way. As long as I failed heve because first partner $4 a+1$ by Cauchy s inequality than, I decided to not fix the second factor under root, to be more precisely, instead of expression $\sqrt{4 x+1}+\sqrt{4 y+1}+\sqrt{4 z+1}$ consider expression
$\sqrt{(4 x+1) \cdot t}+\sqrt{(4 y+1) \cdot t}+\sqrt{(4 z+1) \cdot t}=\sqrt{t} \cdot f(x, y, z)$.
Since $\sqrt{(4 x+1) \cdot t} \leq \frac{4 x+1+t}{2}, \sqrt{(4 y+1) \cdot t} \leq \frac{4 y+1+t}{2}, \sqrt{(4 z+1) \cdot t} \leq \frac{4 z+1+t}{2}$, then

$$
v t \cdot f(x, y, z) \leq \frac{4 \cdot(x+y+z)+3+3 t}{2}=\frac{7+3 t}{2} \Leftrightarrow f(x, y, z) \leq \frac{7+3 t}{2 v t}
$$

and equality occur only if its holds in each of three inequalities it means that when $4 x+1=4 y+1=4 z+1=t$ or when
$x=y=z=\frac{t-1}{4}$. Substitution $x, y, z$ into condition $x+y+z=1$ yields the value of parameter $t=\frac{7}{3}$, and it gives the value of variables $x=y=z=\frac{1}{3}$. Inequality $f(x, y, z) \leq \frac{7+3 t}{2 \sqrt{t}}$ holds for any $x, y, z \geq 0$ \& $x+y+z=1$ and for any t>0 (and parameter $t$ is free, i.e. it is not linked with variables $x, y, z$ by any conditions). Therefore, in particular it holds for $t=7,3$ and it yields the equality $f(x, y, z) \leq \frac{7+7}{2 \sqrt{7 / 3}}=\sqrt{21}$, where upper bound could be reached if $x=y=z=\frac{1}{3}\left(f\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)=3 \sqrt{\frac{4}{3}+1}=\sqrt{3 \cdot 7}=\sqrt{21}\right)$. We could chanes the reasoning at the end. $f(x, y, z) \leq \frac{7+3 t}{2 \sqrt{t}}$ for all $t>0$. Hence $f(x, y, z) \leq \min \frac{7+3 t}{2 \sqrt{t}}=\sqrt{21}$, and since the equality in jnequality $f(x, y, z) \leq \frac{7+3 t}{2 \sqrt{t}}$ holds for every $t$, then it holds and for $t$ which minimize the function $\frac{r+3 t}{2 \sqrt{t}}$ on $(0, \infty)$, if $t=\frac{?}{3}, \quad\left(\frac{7+3 t}{\sqrt{t}} \leq \sqrt{21} \Leftrightarrow(\sqrt{3} \cdot t-\sqrt{7})^{2} \geq 0\right)$
Reader who wants to get more confirmation that this way is effective should solve following problems and its generalization by indefinite parameter method:

Exercise 30. Find the greatest value of function

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sqrt{c x_{1}+b_{1}}+\sqrt{c x_{2}+b_{2}}+\ldots+\sqrt{c x_{n}+b_{n}}
$$

with $x_{1}, x_{2}, \ldots, x_{n} \geq 0$ \& $x_{1}+x_{2}+\ldots+x_{n}=a>0$, where $c, b_{1}, b_{2}, \ldots, b_{n}>0$
Exeroise 31. Let $c, b_{1}, b_{2}, \ldots, b_{n}$ are non-negative numbers. Find the gxeatest value of function:

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sqrt[k]{\left(o x_{1}+b_{1}\right)^{m}}+\sqrt[k]{\left(o x_{2}+b_{2}\right)^{m}}+\ldots+\sqrt[k]{\left(c x_{n}+b_{n}\right)^{m}}
$$

when $x_{1}, x_{2}, \ldots, x_{n} \geq 0, x_{1}+x_{2}+\ldots+x_{n}=a>0 \& k>m$ - natural numbers.
(Hint. Use Cauchy's inequality for $k$ numbers).
Success of that pushes me to think that in my hands is very effective way for proof of inequalities:

$$
\begin{equation*}
\left(\frac{a_{1}^{\mathrm{q}}+a_{2}^{\mathrm{q}}+\ldots+a_{n}^{\mathrm{q}}}{n}\right)^{1 / q} \leq\left(\frac{a_{1}^{\mathrm{p}}+a_{2}^{\mathrm{p}}+\ldots+a_{n}^{p}}{n}\right)^{1 / \mathrm{p}} \text { дла } \mathrm{p}>q \tag{23}
\end{equation*}
$$

i.e. the proof that degree average $G_{p}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is increasing function of variable p 0 .
The proof of inequality (23) is based on inequality (19) which is written like this:

$$
\begin{equation*}
x^{\alpha} \cdot x^{1-\alpha} \leq \infty \cdot x+(1-\infty) \cdot y, \text { for } 0<\alpha<1 \& x, y>0 \tag{24}
\end{equation*}
$$

This is another way of writing the Cauchy's inequality (8) in the case when $a_{1}=a_{2}=\ldots=a_{k}=x \& a_{k+1}=\ldots=a_{n}=y$.

Actually, in this case Cauchy's inequality could be represented

$$
\begin{equation*}
\sqrt[n]{x^{k} \cdot y^{n-k}} \leq \frac{k \cdot x+(n-k) \cdot y}{n}, k<n \tag{25}
\end{equation*}
$$

Notine $\alpha=\frac{k}{n}$, we get $\frac{n-k}{n}=1-\alpha$ \& inequality gets view of (24), where $\alpha-$ is rational number. Hence, reader may take inequality (23) \& (24) as proved only for rational $p$ \& $q$.
Now the time for proving inequality (23).
Let $a_{1}, a_{2}, \ldots, a_{n}, \alpha, t \in \mathbb{R}$, with $a_{1}, a_{2}, \ldots, a_{n} \geq 0,0<\alpha<1$. Denote $a_{1}+a_{2}+\ldots+a_{n}$ by $M$. Then for arbitrary positive number $t$ holds inequality

$$
a_{i}^{\infty} \cdot t^{1-\infty} \leq \infty \cdot a_{i}+(1-\infty) \cdot t, \quad i=1,2, \ldots, n
$$

Their addition yields

$$
t^{1-\infty} \cdot\left(a_{1}^{\infty}+a_{2}^{\infty}+\ldots+a_{n}^{\infty}\right) \leq \infty \cdot M+(1-\infty) \cdot \operatorname{tr}
$$

or it is equivalent to

$$
\begin{equation*}
a_{1}^{\infty}+a_{2}^{\infty}+\ldots+a_{n}^{\infty} \leq(\alpha \cdot M+(1-\infty) \cdot \operatorname{tn}) \cdot t^{\infty-1} \tag{26}
\end{equation*}
$$

With the equality holds when $a_{i}=t, i=1,2, \ldots, n$. i.e. acoounted that $a_{1}+a_{2}+\ldots+a_{n}=M$, where $a_{1}=a_{2}=\ldots=a_{n} t=\frac{M}{n}$.

By settine $t=\frac{M}{n}$ into inequality (26) we get

$$
\begin{aligned}
a_{1}^{\alpha}+a_{2}^{\infty}+\ldots+a_{n}^{\infty} & \leq M \cdot\left(\frac{M}{n}\right)^{\alpha-1} \Leftrightarrow \frac{a_{1}^{\infty}+a_{2}^{\alpha}+\ldots+a_{n}^{\infty}}{n} \leq\left(\frac{M}{n}\right)^{\infty} \Leftrightarrow \\
& \Leftrightarrow\left(\frac{a_{1}^{\alpha}+a_{2}^{\alpha}+\ldots+a_{n}^{\alpha}}{n}\right)^{1, \alpha} \leq \frac{a_{1}+\ldots a_{n}}{n}
\end{aligned}
$$

equality oceur only if $a_{1}=\ldots=a_{n}$.
Let $p \& q$ be an arbitrary positive real numbers with $q<p$.
Substitution $\alpha=\frac{q}{p} \& a_{2}=b_{2}^{p}, i=1,2, \ldots n$, (where $b_{1}, b_{2}, \ldots, b_{n}$ are arbitrary non-negative real numbers) into inequality yielde:

$$
\begin{aligned}
& \left(\frac{a_{1}^{\alpha}+a_{2}^{\alpha}+\ldots+a_{n}^{\alpha}}{n}\right)^{1 / \alpha} \leq \frac{a_{1}+\ldots+a_{n}}{n} \Leftrightarrow\left(\frac{b_{1}^{q}+\ldots+b_{n}^{q}}{n}\right)^{p / q} \leq \frac{b_{1}^{p}+\ldots+b_{n}^{p}}{n} \\
\Leftrightarrow & \left(\frac{b_{1}^{q}+b_{2}^{q}+\ldots+b_{n}^{q}}{n}\right)^{1 / q} \leq\left(\frac{b_{1}^{p}+b_{2}^{p}+\ldots+b_{n}^{p}}{n}\right)^{1 / p} .
\end{aligned}
$$

Equality ocour if $b_{1} w_{2}=\ldots=b_{n}$.

$$
\begin{equation*}
\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+a} \geq \frac{2 \cdot(\alpha-1)}{\alpha^{2}} \tag{28}
\end{equation*}
$$

we could reason otherwise. Since inequalities in (28) hold if and only if $a \cdot a=a+b, a \cdot b=b+c \& a \cdot c a+a$, then addition those inequality yields $a \cdot(a+b+c)=2 \cdot(a+b+c)$ (where $a+b+c=1) \Rightarrow \alpha=2$. Since inequality (28) holds for any $\alpha$, then when $\alpha=2$ holde following inequality:

$$
\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+a}=2 \cdot \frac{2-1}{4}=\frac{1}{2}
$$

with equality occur if $2 a=a+b, 2 b=b+c, 2 c=c+a$, i.e. when $a=b=c=\frac{1}{3}$. As an exercise we are going to offer you follows problems.
Exeroise 32. Find a minimum function $\frac{x^{2}}{x+y}+\frac{y^{2}}{y+z}+\frac{z^{2}}{z+x}$ with $x, y, z>0 \quad \& \sqrt{x y}+\sqrt{y z}+\sqrt{z X}=1$.
Exeroise 33.
a) Let $x_{1}, x_{2}, \ldots, x_{n}>0 \& x_{1}+x_{2}+\ldots+x_{n}=1 \& k<n$. Find a minimum of of function:

$$
S\left(x_{1}, x_{2}, \ldots, x_{r}\right)=\frac{x_{1}^{2}}{x_{1}+x_{2}+\ldots+x_{k}}+\frac{x_{2}^{2}}{x_{2}+x_{3}+\ldots+x_{k+1}}+\ldots+\frac{x_{n}^{2}}{x_{n}+x_{1}+\ldots+x_{k-1}}
$$

b) Let $x_{1}, x_{2}, \ldots, x_{n}>0 \& a_{1}, a_{2}, \ldots, a_{k}>0, k \leq n$. Prove inequality:

$$
\frac{x_{1}^{2}}{a_{1} x_{1}+\ldots+a_{k} x_{k}}+\frac{x_{2}^{2}}{a_{1} x_{2}+\ldots+a_{k} x_{k+1}}+\ldots+\frac{x_{n}^{2}}{a_{1} x_{n}+\ldots+a_{k} x_{k-1}} \geq \frac{x_{1}+x_{2}+\ldots+x_{n}}{a_{1}+a_{2}+\ldots+a_{k}}
$$

Sxample 9 . Find the greatest value of function $x_{1}{ }^{k} \cdot x_{z}{ }^{k} \ldots \cdot x_{n}{ }^{k}$, where $x_{1}+x_{2}+\ldots+x_{n}=1 \& x_{1}, x_{2}, \ldots, x_{n}>0$.

## Solution:

Denote $k_{1}+k_{2}+\ldots+k_{n}$ by $m$. Notice that from Cauchy's inequality follows

$$
\sqrt[m]{x_{1}{ }^{1} \cdot x_{2}^{k} \cdot \ldots \cdot x_{n}{ }^{k}} \leq \frac{k_{1} x_{1}+k_{2} x_{2}+\ldots+k_{n} x_{n}}{m}
$$

Very attracting to discuss the greatest vaiue of $k_{1} x_{1}+k_{2} x_{2}+\ldots k_{n} x_{n}$. But the values of $x_{1}, \ldots, x_{n}$ such which occur inequality should satisfy condition $x_{1}=x_{2}=\ldots=x_{n}$ and it follows that, $x_{1}=x_{2}=\ldots=x_{n}=\frac{1}{n}$
The greatest value of $k_{1} x_{1}+\ldots+k_{n} x_{n}$ for $x_{1}+x_{2}+\ldots+x_{n}=1 \& x_{1}, x_{2}, \ldots, x_{n} \geq 0$ could be reached if $x_{1}=x_{2}=\ldots=x_{n}$ only if $k_{1}=k_{2}=\ldots=k_{n}$. Otherwise, function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=k_{1} x_{1}+\ldots+k_{n} x_{n}$ may have values more than

Since
$G_{-p}\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(\frac{b_{1}^{-p}+b_{2}^{-p}+\ldots+b_{n}^{-p}}{n}\right)^{-1 / p}=\frac{1}{\left(\frac{\left(b_{1}^{-1}\right)^{p}+\ldots+\left(b_{n}^{-1}\right)^{p}}{n}\right)}=$

$$
=\frac{1}{G_{p}\left(b_{1}^{-1}, \ldots, b_{n}^{-1}\right)} \text { then }
$$

first $G_{-p} \leq G_{0}$ for $p>0$, and secondly from $0<q<p$ it follows that
$G_{q}\left(b_{1}^{-1}, \ldots, b_{n}^{-1}\right) \leq G_{p}\left(b_{1}^{-1}, \ldots, b_{n}^{-1}\right) \Leftrightarrow G_{-p}\left(b_{1}, b_{2}, \ldots, b_{n}\right) \leq G_{-q}\left(b_{1}, b_{2}, \ldots, b_{n}\right)$
Thus for any two $p \& q \in \mathbb{R} \& b_{1}, b_{2}, \ldots, b_{n} \geq 0$ holds (23).
It seems to me that this brief proof which is not requiring of any means for rational exponent except Cauchy's inequality is the best confirmation that it's effective to use indefinite parameters. It would be wrong to think that the possibilities of using indefinite parameter are restricting by shown above examples. We are going to show more problems in which solution the indefinite parameter altogether with other base inequalities work very effective.
Erample 8. For $a, b, c>0$ \& $a+b+c=1$ prove inequality:

$$
\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+a} \geq \frac{1}{2}
$$

Solution:
From inequality (?) follows that for any $x, y>0 \& 0$ holds following inequality: $\frac{(\alpha \cdot x)^{2}}{y} \geq 2 \kappa \cdot x-y \quad$ (equality occur onjy if $\alpha \cdot x=y$ ).
Hence, since

$$
\frac{\alpha^{2} a^{2}}{a+b} \geq 2 \alpha \cdot a-(a+b), \frac{\alpha^{2} b^{2}}{b+c} \geq 2 \alpha \cdot b-(b+c), \frac{\alpha^{2} c^{2}}{c+a} \geq 2 \alpha \cdot c-(c+a)
$$

we get.

$$
\alpha^{2} \cdot\left(\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+a}\right) \geq 2 \alpha \cdot(a+b+c)-2 \cdot(a+b+c)=2 \alpha-2 .
$$

Thus, $\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+a} \geq \frac{2 \cdot(\alpha-1)}{\alpha^{2}}$ for any $a \infty 0$.
But then

$$
\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+a} \geq 2 \cdot \max \frac{\alpha-1}{\alpha^{2}} . \quad \text { Since } \frac{\alpha-1}{\alpha^{2}} \leq \frac{1}{4} \Leftrightarrow(\alpha-2)^{2} \geq 0
$$

then $\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+a} \geq \frac{1}{2}$.
with the equality ocour only if $a \cdot a=a+b, \alpha \cdot b=b+c, \alpha \cdot a=c+a \& \alpha=2$, i.e. when $a=b=c=1 / 3$. At the moment we derived inequality:

$$
f\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)=\frac{k_{1}+k_{2}+\ldots+k_{n}}{n}<\max \left\{k_{1}, k_{2}, \ldots . k_{n}\right\}
$$

If $i$ such that $k_{i}=\max \left\{k_{1}, k_{2}, \ldots, k_{n}\right\}$, that $k_{i}=f(0,0,0, \ldots, 0, \ldots 0)$
(1 placed on i-th place). Therefore, it is not the way to get needed result. However, we can save it by introducing indefinite parameters $t_{1}, t_{2}, \ldots, t_{n}>0$. Then:

$$
\left(\left(t_{1} x_{1}\right)^{k_{1}} \cdot\left(t_{2} x_{2}\right)^{k} \ldots \ldots\left(t_{r_{3}} x_{n}\right)^{k}\right)^{1 / m} \leq \frac{k_{1} t_{1} x_{1}+\ldots+k_{n} t_{n} x_{n}}{m} \Leftrightarrow
$$

$\Leftrightarrow x_{1}^{k_{1}} \cdot x_{2}^{k_{2}} \ldots x_{n}^{k} \leq\left(\frac{k_{1} t_{1} x_{1}+\ldots+k_{n} t_{n} x_{r_{1}}}{m}\right)^{m} \cdot \frac{1}{t_{1}^{k_{1}} \cdot t_{2}^{k_{2}} \ldots t_{n}^{k_{n}}}$.
With equality occur if $t_{1} x_{1}=t_{2} x_{2}=\ldots=t_{n} x_{n}$. From other hand, setting $t_{i}=\frac{1}{k_{i}}, i=1,2, \ldots, n$ yields for sum $k_{i} t_{i} x_{1}+\ldots+k_{n} t_{n} x_{n}$ constant value which is equal to one, that abolish the problem of concordance the equality condition with the maximum of sum $k_{1} t_{1} x_{1}+\ldots+k_{n} t_{n} x_{n}$. Hence.
$\frac{x_{1}}{k_{1}}=\frac{x_{2}}{k_{2}}=\ldots=\frac{x_{n}}{k_{n}}=k$, where $k$ is a factor of proportionality Substituting $x_{i}=k \cdot k_{i},(i=1,2, \ldots, n)$ with $x_{1}+x_{2}+\ldots+x_{n}=1$, we get $k=\frac{1}{k_{1}+\ldots+k_{m}}=\frac{1}{m}$. Hence, $x_{i}=\frac{k_{i}}{m}, i=1,2, \ldots, m$. Thus, when $t_{1}=\frac{1}{k_{1}}, t_{2}=\frac{1}{k_{2}}, \ldots, t_{n}=\frac{1}{k_{n}}$ the inequality could be written $\quad x_{i}^{k_{1}} \cdot x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \leq \frac{k_{i}^{k_{1}} \cdot k_{2}^{k_{2}} \ldots \ldots \cdot k_{n}{ }_{n}}{m^{m}}$, where the upper bound of function $x_{1}^{k_{1}} \cdot x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}$ could be reached if $x_{i}=\frac{k_{1}}{m}, i=1,2, \ldots, n$. It follows that the greatest value of function ${ }_{x_{1}}{ }^{k} \cdot x_{2}{ }_{2} \cdot \ldots \cdot x_{n}{ }_{n}$ with $x_{1}+x_{2}+\ldots+x_{n}=1 \quad \& x_{1}, x_{2}, \ldots . x_{n}>0$ is equal to $\frac{k_{1}^{k} \cdot k_{2}^{k} \cdot \ldots \cdot k_{n}^{k}}{\left(k_{1}+\ldots+k_{n}\right)^{k_{1}+\ldots+k_{n}}}$.
Example 10. Let $x_{1}, x_{2}, \ldots, x_{n} \in[a, b]$, where $0<a<b$. Prove inequality:

$$
\left(x_{1}+x_{2}+\ldots+x_{n}\right) \cdot\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}\right) \leq \frac{n^{2} \cdot(a+b)^{2}}{4 a b}
$$

Solution: For arbitrary positive number $t$ we have

$$
\sqrt{\left(x_{i}+x_{2}+\ldots+x_{n}\right) \cdot\left(\frac{1}{x_{i}}+\frac{1}{x_{z}}+\ldots+\frac{1}{x_{n}}\right)}=\sqrt{\left(t x_{i}+\ldots+t x_{n}\right) \cdot\left(\frac{1}{L x_{1}}+\ldots+\frac{1}{i x_{n}}\right)} \leq
$$

$$
\begin{align*}
& \leq \frac{\left(t x_{1}+t x_{2}+\ldots+t x_{n}\right)+\left(\frac{1}{t x_{1}}+\ldots+\frac{1}{i x_{n}}\right)}{2} \Leftrightarrow\left(x_{1}+x_{2}+\ldots+x_{n}\right) \cdot\left(\frac{1}{x_{1}}+\ldots+\frac{1}{x_{n_{1}}}\right) \leq \\
& \leq \frac{1}{4} \cdot\left(\left(t x_{1}+\frac{1}{t x_{1}}\right)+\ldots+\left(t x_{n}+\frac{1}{t x_{n}}\right)\right)^{2}
\end{align*}
$$

Let $0<c<d$. Prove that for any $x \in[c, d]$ holds inequality:
$x+\frac{1}{x} \leq \max \left\{c+\frac{1}{c}, d+\frac{1}{d}\right\}$. Notice first that $x+\frac{1}{x} \leq y+\frac{1}{y} \Leftrightarrow y-x \geq \frac{y-x}{x y} \Leftrightarrow$ $\Leftrightarrow(y-x) \cdot(1-x y) \geq 0$. Let $c<x<d$. If $x+\frac{1}{x} \leq c+\frac{1}{c}$, then $x+\frac{1}{x} \leq \max \left\{c+\frac{1}{c}, d+\frac{1}{d}\right\}$ Suppose that $x+\frac{1}{x}>c+\frac{1}{c}$. This inequality is equivalent to $(x-c) \cdot(x c-1)>0 \Leftrightarrow x<>1 \Rightarrow x d>1 \Leftrightarrow(d-x) \cdot(d x-1)>0 \Leftrightarrow x+\frac{1}{x}>d+\frac{1}{d}$. Thus, for any $x \in[c, d] \quad x+\frac{1}{x} \leq \max \left\{c+\frac{1}{c}, d+\frac{1}{d}\right\}$ and since the uppex bound could be reached then $\max _{a}\left(x+\frac{1}{x}\right)=\max \left\{c+\frac{1}{c}, d+\frac{1}{d}\right\}$.
Tum back to the main inequality. Since $x_{i} \in[a, b]$, then $t x_{i} \in[t a, t b]$ \& $\mathrm{tx}_{\mathrm{i}}+\frac{1}{\mathrm{tx}_{\mathrm{i}}} \leq \max \left\{\mathrm{ta}+\frac{1}{\mathrm{ta}}, \mathrm{tb}+\frac{1}{\mathrm{tb}}\right\}, \mathrm{i}=1, \ldots, \mathrm{n}$. Notice that $\mathrm{ta}+\frac{1}{\mathrm{ta}}=\mathrm{tb}+\frac{1}{\mathrm{tb}} \Leftrightarrow$ $t^{2} a b-1=0 \Leftrightarrow t=\frac{1}{\sqrt{a b}}$. Since inequality (20) is true for any $t$, then in partioular its true for $t=\frac{1}{\sqrt{a b}}$, and then $t x_{i}+\frac{1}{t x_{i}} \leq \sqrt{ } \frac{a}{b}+\sqrt{\frac{b}{a}}=\frac{a+b}{\sqrt{a b}}$, it means that

$$
\begin{equation*}
\left(x_{1}+x_{2}+\ldots+x_{n}\right) \cdot\left(\frac{1}{x_{1}}+\ldots+\frac{1}{x_{n}}\right) \leq \frac{1}{4} \cdot\left(n \cdot \frac{a+b}{\sqrt{a b}}\right)^{2}=n^{2} \cdot \frac{(a+b)^{2}}{4 a b} \tag{30}
\end{equation*}
$$

When $n$ is an even, i.e. $n=2 k$ for some $k$ and upper bound is reachable if $x_{1}=x_{2}=\ldots=x_{k}=a n x_{k+1}=\ldots=x_{n}=b$, but if $n$ is an odd number it's wrong. Searching for upper bound for any $n$, i.e. maximum of function $h\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}+x_{2}+\ldots+x_{n}\right) \cdot\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}\right)$ if $x_{i} \in[a, b], 0<a<b-$ is a complicate problem and it can be solved by other ways. (See "DELTA"s competition No. 10).
We re going to show one more example of using indefinite parameter method in the proof of Cauchy-Bunyakovsky-Shwartz's inequality which is playing in mathematics and applications very important role. We are not going to stay on explicit geometric interpretation of this inequality connected with mesures of length, angles and with conception of distance in finite \& infinite spaces. However, we shall use the notion system in which you can see well-known inner product from vector algebra.

Theorem 4. For any $x_{1}, x_{2}, \ldots, x_{n} \& y_{1}, y_{2}, \ldots, y_{n}$ holds following Cauchy-Bunyakovsky-Shwartz (CBS) inequality:

$$
\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right)^{2} \leq\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right) \cdot\left(y_{1}^{2}+y_{2}^{2}+\ldots+y_{n}^{2}\right)
$$

with equality occur if and only if there exist kelR such that $x_{i}=k y_{2}, i=1,2, \ldots, n$. (See strict definition of ordered set on page 88)

Proof: For two ordered sets $x=\left(x_{i}, x_{2}, \ldots, x_{n}\right) \& y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
Note the sum $x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}$ by $S(x, y)$.
Notice following facts - simple properties of $S(x, y)$. However, the reader should prove it by himself).

1. $S(x, x) \geq 0$ for any set $x$ and $S(x, x)=0$ if and only if $x=0$, i.e. when $\mathrm{x}=(0,0, \ldots, 0)$.
2. $S(x, y)=S(y, x)$ for any $x$ i $y$.
3. $S(k x, y)=k \cdot G(x, y)$, where $k$ - any real number, $x \& y-$ arbitrary sets From 2) \& 3) follow that $S(x, k y)=k \cdot G(x, y)$
4. $S(x+y, z)=S(x, z)+G(y, z)$, for any sete of numbers $x, y$ \& $z$.
(Here $k x=\left(k x_{1}, k x_{2}, \ldots, k x_{n}\right) \& \quad x+y=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)$ ).
By those notions the CBS inequality could be rewritten as

$$
S^{2}(x, y) \leq S(x, x) \cdot S(y, y)
$$

The proof is very short:
From 1) property for any sets of $n$ numbers $x \& y$ and any number t (here is a parameter !) holds inequality $G(x-t y, x-t y) \geq 0$ when equality occur if and only if $x-t y=0$ or $x=t y$. From other hand, using properties 2), 3), 4) we obtain $S(x-t y, x-t y)=S(x, x)-2 t \cdot S(x, y)+t^{2} \cdot S(y, y)$
Considering $S(x-t y, x-t y)$ as quadratic three terms relatively parameter $t$, we conclude that $S(x-t y, x-t y) \geq 0$ for any $t i f$ and only if the discriminant satisfy inequality:

$$
S^{2}(x, y)-S(x, x) \cdot S(y, y) \leq 0 \Leftrightarrow S^{2}(x, y) \leq S(x, x) \cdot S(y, y)
$$

In this case equality $S(x-t y, x-t y)=0$ as quadratic three terms relatively variable $t$ is equal to zero if and only if:
$S^{2}(x, y)=S(x, x) \cdot S(y, y)$, from property 1 ) it s possible only if $x-t y=0$,
i.e. $x_{i}=t y_{i}, i=1,2, \ldots, n$. That was needed to prove.

The sets $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \& y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ could be considered as $n-d i m e n-$ tional vectors. Equality condition of CBS inequality can be considered as collinearity condition of vectors $x \& y$.
Of course the CBS inequality we could get as a particular case of Gelder s inequality (exeroise $26(b)$ ) with $p=2$. However, as said before we are interesting in ways of deriving but not in result by itself. In this case the closed (by references) proof is preferable. Consider the applications of CBS inequality to inequalities proofs and problems solutions:

1. Inequality $\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}\right) \cdot n \geq\left(a_{1}+a_{2}+\ldots+a_{n}\right)$ is simple corollary from CBS inequality when $x_{i}=a_{i}$ \& $y_{i}=1$.
2 . Settine in CBS inequality for

$$
x_{i}=\frac{a_{i}}{\sqrt{a_{i+1}}}, y_{i}-\sqrt{a_{i+1}}
$$

$i=1,2, \ldots, n$ и $x_{n}=\frac{a_{n}}{a_{1}}, y_{n}=\sqrt{a_{1}}$, we get:
$\left(\frac{a_{1}^{2}}{a_{2}}+\frac{a_{2}^{2}}{a_{3}}+\ldots+\frac{a_{n}^{2}}{a_{1}}\right) \cdot\left(a_{2}+a_{3}+\ldots+a_{n-1}+a_{1}\right) \geq\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{2} \Leftrightarrow$ $\Leftrightarrow \frac{a_{1}^{2}}{a_{z}}+\frac{a_{2}^{2}}{a_{3}}+\ldots+\frac{a_{n}^{2}}{a_{1}} \geq a_{i}+a_{2}+\ldots+a_{n}$, when eguality occur if $\frac{a_{1}}{a_{2}}=\frac{a_{2}}{a_{3}}=\ldots=\frac{a_{n}}{a_{1}} \Leftrightarrow a_{1}=a_{2}=\ldots=a_{n}$. Simjlarly we can prove more general inequality which was considered in exercise 33
3. Let $a, b, c>0$ $\left(\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\right)^{2}=\left(\frac{a}{b} \cdot \frac{b}{a}+\frac{c}{a} \cdot \frac{a}{b}+\frac{b}{c} \cdot \frac{c}{a}\right)^{2} \leq\left(\frac{a^{2}}{b^{2}}+\frac{c^{2}}{a^{2}}+\frac{b^{2}}{c^{2}}\right) \cdot\left(\frac{b^{2}}{c^{2}}+\frac{a^{2}}{b^{2}}+\frac{c^{2}}{a^{2}}\right)$

$$
\Leftrightarrow \quad \frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}} \geq \frac{a}{c}+\frac{c}{b}+\frac{b}{a}
$$

4. Prove inequality:

$$
\frac{\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{2}}{2 \cdot\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}\right)} \leq \frac{a_{1}}{a_{2}+a_{3}}+\ldots+\frac{a_{n}}{a_{1}+a_{2}}, \text { длg } a_{1}, a_{2}, \ldots, a_{n}>0
$$

Proof. Since

$$
a_{i}=\sqrt{\frac{a_{i}}{a_{i+1}+a_{i+2}}} \cdot \sqrt{a_{i}\left(a_{i+1}+a_{i+2}\right)}, i=1,2, \ldots, n-2
$$

$a_{n-1}=\sqrt{\frac{a_{n-1}}{a_{n}+a_{1}}} \cdot \sqrt{a_{n-1}\left(a_{n}+a_{1}\right)}, a_{n}=\sqrt{\frac{a_{n}}{a_{1}+a_{z}}} \cdot \sqrt{a_{n}\left(a_{1}+a_{2}\right)}$, then by CBS inequality $\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{2} \leq\left(\frac{a_{1}}{a_{2}+a_{3}}+\ldots+\frac{a_{n}}{a_{1}+a_{2}}\right) \cdot\left(\left(a_{1} \cdot\left(a_{2}+a_{3}\right)+\ldots+a_{n} \cdot\left(a_{1}+a_{2}\right)\right) \leq\right.$ $\leq\left(\frac{a_{1}}{a_{2}+a_{3}}+\ldots+\frac{a_{n}}{a_{1}+a_{2}}\right) \cdot\left(\left(\frac{a_{1}^{2}+a_{2}^{2}}{2}+\frac{a_{1}^{2}+a_{3}^{2}}{2}\right)+\left(\frac{a_{2}^{2}+a_{3}^{2}}{2}+\frac{a_{2}^{2}+a_{4}^{2}}{2}\right)+\ldots+\left(\frac{a_{n-1}^{2}+a_{n}^{2}}{2}\right.\right.$ $\left.+\frac{a_{n-1}^{2}+a_{1}^{2}}{2}\right)+\left(\frac{a_{n}^{2}+a_{1}^{2}}{2}+\frac{a_{n}^{2}+a_{2}^{2}}{2}\right)=\left(\frac{a_{1}}{a_{2}+a_{3}}+\ldots+\frac{a_{n}}{a_{1}+a_{2}}\right) \cdot\left(2 a_{1}^{2}+2 a_{z}^{2}+\ldots+2 a_{n}^{2}\right)$, since every element $a_{2}$ appears with four others elements, i.e. $a_{i-2}\left(a_{i-1}+a_{i}\right), a_{i-1}\left(a_{i}+a_{i+1}\right), a_{i}\left(a_{i+1}+a_{i+2}\right)$.
5. Given that $x^{2}+3 y^{2}+z^{2}=2$. Find the gmallest value of function $2 x+y-z$ :

## Solution:

$(2 x+y-z)^{2}=\left(2 \cdot x+\frac{1}{\sqrt{3}} \cdot \sqrt{3} \cdot y-1 \cdot z\right)^{2} \leq\left(x^{2}+3 y^{2}+z^{2}\right) \cdot\left(2^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}+1^{2}\right) \Leftrightarrow$
$\Leftrightarrow(2 x+y-z)^{2} \leq 2 \cdot\left(4+\frac{1}{3}+1\right)=\frac{32}{3}$. Hence, $|2 x+y-z| \leq 4 \sqrt{\frac{2}{3}}$.
Equality condition is $\frac{x}{2}=\frac{\sqrt{3} \cdot y}{1 \cdot \sqrt{3}}=\frac{2}{-1} \Leftrightarrow \frac{x}{2}=3 y=-z=t$, $t$ is a parameter. Hence, $x=2 t, y=\frac{t}{3}, z=-t$. Since $x^{2}+3 y^{2}+z^{2}=2$, then $4 t^{2}+\frac{t^{2}}{3}+t^{2}=2 \Leftrightarrow$ $\Leftrightarrow t^{2}=\frac{3}{8} \Leftrightarrow|t|=\frac{1}{2} \cdot \sqrt{\frac{3}{2}} \cdot$ Since $-4 \cdot \sqrt{\frac{2}{3}} \leq 2 x+y-z \leq 4 \cdot \sqrt{\frac{2}{3}}$, then when $t=\frac{1}{2} \sqrt{\frac{3}{2}} \& x=\sqrt{\frac{z}{3}}, y=\frac{1}{2 \sqrt{c}}, z=-\frac{1}{2} \sqrt{\frac{3}{2}}, 2 x+y-z=\sqrt{c}+\frac{1}{2 \sqrt{0}}+\frac{3}{2 \sqrt{6}}=\frac{16}{2 \sqrt{0}}=4 \sqrt{\frac{2}{3}}$ we reach the greatest value of function $2 x+v-z$, and when $t=-\frac{1}{2} \sqrt{\frac{3}{2}}, x=-\sqrt{\frac{3}{2}}, y=-\frac{1}{2 \sqrt{6}}, z=\frac{1}{2} \sqrt{\frac{3}{2}}$ reach the smallest value of function $2 x+y-z$.
G. Solve followine system

$$
\left\{\begin{array}{l}
x^{2}+y^{2}+z^{2}=1 \\
x+y+1990 \cdot z=1991
\end{array}\right.
$$

Solution Suppose $x, y, z$ is solution of system then $1991^{2} \leq(x \cdot 1+y \cdot 1+z \cdot 1990)^{2} \leq\left(1^{2}+1^{2}+1990^{2}\right) \cdot\left(x^{2}+y^{2}+z^{2}\right) \Leftrightarrow 1991^{2} \leq 1990^{2}+2 \Longleftrightarrow$ $\Leftrightarrow 2 \cdot 1990+1 \leq 2$. we got contradiction. The system has no solution.

Fxercise 34 . Find greatest and smallest values of function $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{2}$, with $\quad b_{1} x_{1}^{2}+b_{2} x_{2}^{2}+b_{3} x_{3}^{2}=c, \quad c_{1} b_{1}, b_{2}, b_{3} \geq 0$.
Exeroise 35. Find greatest value of function $x+y+z$ when $x^{2}+2 y^{2}+z^{2}+x y-x z-y z=1$.

Exeroise 36. Solve system:

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+\ldots+x_{n}=1 \\
x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=\frac{1}{n}
\end{array}\right.
$$

Exeroise 37. Prove inequality:

$$
(x+y+z)^{2}+(x+a)^{2}+(y+b)^{2}+(z+c)^{2} \geq \frac{1}{4} \cdot(a+b+c)^{2}
$$

Find out when equality occur.
Exeraise 38 . Prove inequality:

$$
\sum_{i=1}^{n} x_{i}^{2}+\sum_{i=1}^{n}\left(x_{i}+a\right)^{2} \geq \frac{n}{n+1} \cdot a^{2}
$$

When does equality occur?

## Variation 4.

Here we go back to the problems and ideas from variation 1 which is linked with concordant pairs and further development of ideas on high technio
level. As before we'll start from concrete inequalities.
We remind you the definition of concordance paire. Two ordexed para of
numbers (a,b) $\&(c, d)$ are concordant in order it (a-b) (o-d) $\geq 0$.
Example 11. Prove inequality:

$$
x^{x} \cdot y^{y} \cdot z^{z} \geq(x y z)^{(x+y+z y 3}
$$

Solution.
Pairs $(x, y) \&(\ln x, \ln y)$ are concordant in order since $f(t)=\ln t$ is monotone increasing onto domain of definition, it means
$(x-y) \cdot(\ln x-\ln y) \geq 0 \Leftrightarrow x \cdot \ln x+y \cdot \ln y \geq x \cdot \ln y+y \cdot \ln x \Leftrightarrow e^{x \ln x+y \ln y} \geq$ $\geq e^{x \ln y+y \ln x} \Leftrightarrow x^{*} \cdot y^{y} \geq y^{x} \cdot x^{y} \Leftrightarrow x^{x} \cdot y^{y} \geq(x y)^{(x+y, 2} \cdot(x, y>0)$.

The same result we could get without involving of logarithms, namely on the base of following thing. If pairs $(a, b) \&(c, d)$ are concordant in order and numbers $a$ i $b$ are positive, then $\left(\frac{a}{b}\right)^{c-d} \geq 1$. Actually, if $a \geq b$ then $\frac{a}{b} \geq 1$ and therefore $\geq d$ it means $\left(\frac{a}{b}\right)^{c-d} \geq 1$. If $a \leq b$ then $b y$ considered case $\left(\frac{b}{a}\right)^{d-c} \geq 1 \Leftrightarrow\left(\frac{a}{b}\right)^{c-d} \geq 1$.
Rewrite last inequality so $a^{c} \cdot b^{d} \geq b^{c} \cdot a^{d}$.
Thus, we ve got that for concordant in order pairs of numbers ( $a, b$ ) \& ( $c, d$ ), where $a, b>0$ holds inequality $a^{c} \cdot b^{d} \geq b^{c} \cdot a^{d}$.
In particular for any $x, y>0$ pairs $(x, y) \&(x, y)$ are conoordant in order, hence $x^{x} \cdot y^{y} \geq x^{y} \cdot y^{x}$. Multiply both of sides by $x^{x} \cdot y^{y}$ and extracting the square root yields $x^{x} \cdot y^{y} \geq(x y)^{(x+y), 2}$.
Multiply following inequality $\left(\frac{x}{y}\right)^{x-y} \geq 1,\left(\frac{y}{z}\right)^{y-z} \geq 1,\left(\frac{2}{x}\right)^{z-x} \geq 1$, we get:

$$
\begin{gathered}
\left(\frac{x}{y}\right)^{x-y} \cdot\left(\frac{y}{z}\right)^{y-z} \cdot\left(\frac{z}{x}\right)^{z-x} \geq 1 \Leftrightarrow \frac{x^{x} \cdot y^{y}}{y^{x} \cdot x^{y}} \cdot \frac{y^{y} \cdot z^{z}}{y^{z} \cdot z^{y}} \cdot \frac{z^{z} \cdot x^{x}}{z^{x} \cdot x^{z}} \geq 1 \Leftrightarrow \\
x^{2 x} y^{2 y} z^{2 z} \geq x^{y+z} y^{x+z} z^{x+y} \Leftrightarrow x^{3 x} y^{3 y} z^{3 z} \geq(x y z)^{x+y+z} \Leftrightarrow x^{x} y^{y} z^{z} \geq(x y z)^{(x+y+z), 3}
\end{gathered}
$$

Now appear a suggestion that holds following inequality

$$
x_{1}^{x_{1}} \cdot x_{2}^{x_{2}} \ldots x_{n}^{x_{n}} \geq\left(x_{1} x_{2}, \ldots x_{n}\right) \frac{x_{1}+x_{2}+\ldots+x_{n}}{n}, x_{1}, x_{2}, \ldots, x_{n}>0
$$

Taking logarithms of this inequality yields:

$$
\begin{equation*}
\frac{x_{1} \cdot \ln x_{1}+x_{2} \cdot \ln x_{2}+\ldots+x_{n} \cdot \ln x_{n}}{x_{1}+x_{2}+\ldots+x_{r_{1}}} \geq \frac{\ln x_{1}+\ln x_{2}+\ldots+\ln x_{n}}{n} \tag{31}
\end{equation*}
$$

This representation of inequality pushes on an idea that if inequality is true then the cause of that is concordance of pairs $\left(x_{i}, x_{j}\right) \&\left(\ln x_{i}, \ln x_{j}\right)$, which follow from monotone increasing of logarithm function. Appear a suggestion that this inequality will be true if instead of $\ln x$ we take an arbitrary monotone function, i.e. we talk about inequality:

$$
\begin{equation*}
\frac{x_{1} \cdot f\left(x_{1}\right)+x_{2} \cdot f\left(x_{2}\right)+\ldots+x_{n} \cdot f\left(x_{n}\right)}{x_{1}+x_{2}+\ldots+x_{n}} \geq \frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)}{n} \tag{32}
\end{equation*}
$$

with $x_{1}, x_{2}, \ldots, x_{n}$ belong to domain where function $f(x)$ is monotone increasing (precisely, decreasing).
For the proof we need two identities:

1. $\sum_{1 \leq i<j \leq n}\left(a_{i}+a_{j}\right)=(n-1) \cdot \sum_{i=1}^{n} a_{i}$
2. $\sum_{1 \leq i<j \leq n}\left(a_{i} b_{j}+a_{j} b_{i}\right)=\left(\sum_{i=1}^{n} a_{i}\right) \cdot\left(\sum_{i=1}^{n} b_{i}\right)-\sum_{i=1}^{n} a_{i} b_{i}$

## Proof:

$$
\begin{aligned}
& \text { 1. } \sum_{i=1}^{n} \sum_{j=1}^{n}\left(a_{i}+a_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}+\sum_{i=1}^{n} \sum_{j=1}^{n} a_{j}=\sum_{i=1}^{n} a_{i} \sum_{j=1}^{n} 1+\sum_{j=1}^{n} a_{j} \sum_{i=1}^{n} 1=n \cdot \sum_{i=1}^{n} a_{i}+ \\
& +n \cdot \sum_{j=1}^{n} a_{j}=2 n \cdot \sum_{i=1}^{n} a_{i} \text {. From other hand, } \sum_{i=1}^{n} \sum_{j=1}^{n}\left(a_{i}+a_{j}\right)=\sum_{i=1}^{n}\left(a_{i}+a_{i}\right)+\sum_{1 \leq i<j \leq n_{i}}\left(a_{j}\right) \\
& +\sum_{i \leq i<j \leq n}\left(a_{i}+a_{j}\right)=2 \cdot \sum_{i=1}^{n} a_{i}+2 \cdot \sum_{i \leq i<j \leq n}\left(a_{i}+a_{j}\right) \text {, since } \sum_{i \leq i<j \leq n}\left(a_{i}+a_{j}\right)=\sum_{1 \leq j<i \leq n}\left(a_{i}+a_{j}\right)
\end{aligned}
$$

$$
\text { It means } 2 n \cdot \sum_{i=1}^{n} a_{i}=2 \cdot \sum_{1 \leq i<j \leq n}\left(a_{i}+a_{j}\right)+2 \cdot \sum_{i=1}^{n} a_{i} \Leftrightarrow \sum_{1 \leq i<j \leq n}\left(a_{i}+a_{j}\right)=(n-1) \cdot \sum_{i=1}^{n} a_{i} \text {. }
$$

$$
\text { 2. }\left(\sum_{i=1}^{n} a_{i}\right) \cdot\left(\sum_{j=1}^{n} b_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} b_{j}=\sum_{i=1}^{n} a_{i} b_{j}+\sum_{1 \leq i<j \leq n} a_{i} b_{j}+\sum_{1 \leq i<i \leq n} a_{i} b_{j}=\sum_{i=1}^{n} a_{i} b_{j}+
$$

$$
+\sum_{1 \leq i<j \leq n}\left(a_{i} b_{j}+a_{j} b_{i}\right) \text {, since } \sum_{1 \leq i<i \leq n} a_{i} b_{j}=\sum_{i \leq i<j \leq n} a_{j} b_{i} .
$$

Now we can take to prove the inequality. Let $f$ is monotone non-decreasing onto domain $D \& x_{1}, x_{2}, \ldots, x_{n} \in D$. Since pajes $\left(x_{i}, y_{i}\right) \&\left(f\left(x_{i}\right), f\left(x_{j}\right)\right)$ are concordant then

$$
\begin{aligned}
& 0 \leq \sum_{1 \leq i<j \leq n_{i}}\left(x_{j}\right) \cdot\left(f\left(x_{i}\right)-f\left(x_{j}\right)\right)=\sum_{i \leq i<j \leq n_{i}}\left(x_{i} f\left(x_{i}\right)+x_{j} f\left(x_{j}\right)\right)-\sum_{i \leq i<j \leq n}^{\sum_{i=1}^{n}\left(x_{i} f\left(x_{j}\right)+x_{j} f\left(x_{i}\right)\right)} \\
& =(n-1) \cdot \sum_{i=1}^{n} f\left(x_{i}\right)-\left(\left(\sum_{i=1}^{n} x_{i}\right) \cdot\left(\sum_{i=1}^{n} f\left(x_{j}\right)\right)-\sum_{i=1}^{n} x_{i} f\left(x_{i}\right)\right)=\sum_{i=1}^{n} x_{i} f\left(x_{i}\right)-
\end{aligned}
$$

$-\left(\sum_{i=1}^{n} x_{i}\right) \cdot\left(\sum_{i=1}^{n} f\left(x_{i}\right)\right) \Leftrightarrow \quad n \cdot \sum_{i=1}^{n} x_{i} f\left(x_{i}\right) \geq\left(\sum_{i=1}^{n} x_{i}\right) \cdot\left(\sum_{i=1}^{n} f\left(x_{i}\right)\right)$
If $x_{1}, x_{2}, \ldots, x_{n}>0$, then inequality we can rewrite in the view of (32).
Substitution $f(x)=\ln x$ into (33) yields (31).
Exercise 39 a) Prove inequality:

$$
3 \cdot\left(a^{3}+b^{3}+c^{3}\right) \leq(a+b+c) \cdot\left(a^{2}+b^{2}+c^{2}\right), \quad a, b, c \geq 0
$$

b) Let $f(x)$ is a monotone non-decreasing function. Prove inequality:

$$
\frac{f(1)+2 \cdot f(2)+\ldots+n \cdot F(n)}{n+1} \geq \frac{f(1)+f(2)+\ldots+f(n)}{2}
$$

Go back to inequality $a_{1} b_{1}+a_{2} b_{2} \geq a_{1} b_{2}+a_{2} b_{1}$, where ordered pairs $\left(a_{1}, a_{2}\right) \&\left(b_{1}, b_{2}\right)$ are concordant in order and we are going to try generalize for greater number of variables. For the beginning consider case $n=3$. Then for any $1 \leq i<j \leq 3,1 \leq k<m \leq 3$ pairs $\left(a_{i}, a_{j}\right) \&\left(b_{k}, b_{m}\right)$ are oncordant in order and it means $a_{i} b_{k}+a_{j} b_{m} \geq a_{i} b_{m}+a_{j} b_{k}$. Hence we get following chains of inequalities (over and under arrows pointed concordant pairs).

Suppose that $a_{1} \leq a_{2} \leq a_{3} \& b_{1} \leq b_{2} \leq b_{3}$, then

$\frac{\left(a_{1}, a_{2}\right) \text { и }\left(b_{1}, b_{2}\right)}{\sqrt{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \geq \Gamma_{a_{1}} b_{2}+a_{2} b_{1}}+\frac{\left(a_{3} b_{3}, a_{2}\right) и\left(b_{2}, b_{3}\right)}{\left.\left(a_{2}, a_{3}\right) a_{1} b_{2}+a_{2} b_{3}+a_{3} b_{1} \geq b_{1}, b_{3}\right)}+b_{3}+a_{2} b_{2}}+a_{3} b_{1}$
Transformations in chains correspond to the following chain of permutations of numbers ( $1,2,3$ ):

1. $(1,2,3) \rightarrow(1,3,2) \rightarrow(3,1,2) \rightarrow(3,2,1)$
2. $(1,2,3) \rightarrow(2,1,3) \rightarrow(2,3,1) \rightarrow(3,2,1)$

Number of different permutations ( $1,2,3$ ) is equal to six: $(1,2,3),(1,3,2)$, $(3,1,2),(2,1,3),(3,2,1)$.
From all we ve done we can make conclusion which is completely included in following inequality:

$$
\begin{equation*}
a_{1} b_{3}+a_{2} b_{2}+a_{9} b_{1} \leq a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \leq a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \tag{34}
\end{equation*}
$$

where $a_{1} \leq a_{2} \leq a_{3}, b_{1} \leq b_{2} \leq b_{3} ;\left(j_{1}, i_{2}, i_{3}\right.$ ) is an arbitrary permutation of numbers (1,2,3).

Io what follows we shall say that ordered triples $\left(a_{1}, a_{2}, a_{3}\right) \&\left(b_{1}, b_{2}, b_{3}\right)$ are concordant in order if for any $1 \leq i<j \leq 3$ the pairs $\left(a_{i}, a_{j}\right) \&\left(b_{i}, b_{j}\right)$ are concordant in order.
Suppose that triples $\left(a_{1}, a_{2}, a_{3}\right) \&\left(b_{1}, b_{2}, b_{3}\right)$ are concordant in order. Then there exist a permutation ( $j_{1}, j_{2}, j_{3}$ ) of numbers ( $1, a, 3$ ) such that $a_{j} \leq a_{j} \leq a_{j}$ But then $b_{j_{1}} \leq b_{j_{2}} \leq b_{j_{3}}$. Denote $y_{k}=a_{j_{k}}, y_{k}=b_{j_{k}}, k=1,2,3$.

Let $\left(i_{1}, i_{2}, i_{3}\right)$ is an arbitrary permutation of numbers ( $1,2,3$ ). Consider the sum

$$
a_{1} b_{i}+a_{2} b_{2}+a_{3} b_{i_{3}}=a_{1} b_{i_{1}}+a_{j_{2}} b_{1_{3}}+a_{j_{3}} b_{i_{3}}
$$

There exist a permutation $\left(k_{1}, k_{2}, k_{3}\right)$ of numbers $(1,2,3)$ such that $i_{j_{1}}=j_{k_{1}}$, $i_{j_{2}}=j_{k_{2}}, i_{j_{3}}=j_{k_{3}}$. Actually, $i_{j_{1}}$ is one of the numbers $1,2,3$ and therefore in ordered set $\left(j_{1}, \dot{j}_{2}, j_{3}\right)$ its placed on $k_{1}$-th place for some $k_{1}$, i.e. $j_{k_{1}}=i_{j_{1}}$. Similarly, numbers $i_{j_{2}} \& i_{j_{3}}$ keep places $k_{2} \& k_{3}$. (Each number keep only one place). Then:
$a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=a_{1} b_{1}+a_{1} b_{2}+a_{3} b_{3}=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} \geq x_{1} y_{k_{1}}+x_{2} y_{k_{2}}+x_{3} y_{k_{3}}$
$=a_{i_{1}} b_{i_{k}}+a_{j_{2}} b_{j_{2}}+a_{j_{3}} b_{j_{k_{3}}}=a_{j_{1}} b_{i_{i}}+a_{j_{2}} b_{i_{j_{2}}}+a_{j_{3}} b_{i_{3}}=a_{1} b_{i}+a_{2} b_{i_{2}}+a_{3} b_{i_{3}}$,
as long as numbers $x_{1}, x_{2}, x_{3} \& y_{1}, y_{2}, y_{3}$ can be set to inequality (34).
Thus for any two ordered triples $\left(a_{1}, a_{2}, a_{3}\right) \&\left(b_{1}, b_{2}, b_{3}\right)$ which are concordant in order, holds inequality for any permutation:

$$
\begin{equation*}
a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1} \leq a_{1} b_{2}+a_{2} b_{2}+a_{3} b_{3} \leq a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \tag{35}
\end{equation*}
$$

since sets $\left(a_{1}, a_{2}, a_{3}\right) \&\left(-b_{3},-b_{2},-b_{1}\right)$ are concordant then

$$
a_{1}\left(-b_{3}\right)+a_{2}\left(-b_{2}\right)+a_{3}\left(-b_{1}\right) \geq a_{1}\left(-b_{i_{1}}\right)+a_{2}\left(-b_{i_{2}}\right)+a_{3}\left(-b_{i_{3}}\right) .
$$

Inequality (35) gives a chance to prove inequalities which are difficult indeed. To be convinced of that sufficiently to prove inequalities which will be written below without references to inequality (35).
Let $a, b, o>0$. Prove inequalities:

1. $\frac{a^{4}}{a}+\frac{b^{4}}{a}+\frac{c^{4}}{b} \geq a^{3}+b^{3}+c^{3}$.

Solution. Triples $\left(a^{4}, b^{4}, c^{4}\right) \&\left(-\frac{1}{a},-\frac{1}{b},-\frac{1}{c}\right)$ are conoordant, then

$$
a^{4}\left(-\frac{1}{a}\right)+b^{4}\left(-\frac{1}{b}\right)+c^{4}\left(-\frac{1}{c}\right) \geq a^{4}\left(-\frac{1}{c}\right)+b^{4}\left(-\frac{1}{a}\right)+c^{4}\left(-\frac{1}{b}\right) \Leftrightarrow
$$

$$
\Leftrightarrow \quad a^{3}+b^{3}+c^{3} \leq \frac{a^{4}}{c}+\frac{b^{4}}{a}+\frac{c^{4}}{b}
$$

2. $\frac{a^{3}}{b^{2}+b c+c^{2}}+\frac{b^{3}}{c^{2}+c a+a^{2}}+\frac{a^{3}}{a^{2}+a b+b^{2}} \geq \frac{a+b+c}{3}$

Solution. Triples $\left(a^{3}, b^{3}, c^{3}\right) \&\left(\frac{1}{b^{2}+b c+c^{2}}, \frac{1}{a^{2}+c a+a^{2}}, \frac{1}{a^{2}+a b+b^{2}}\right)$ are concordant. Really
$\left(a^{3}-b^{3}\right)\left(\frac{1}{b^{2}+b c+c^{2}}-\frac{1}{c^{2}+c a+a^{2}}\right)=\frac{\left(a^{3}-b^{3}\right) \cdot\left(c^{2}+c a+a^{2}-b^{2}-b c-c^{2}\right)}{\left(b^{2}+b c+c^{2}\right) \cdot\left(c^{2}+c a+a^{2}\right)}=\frac{\left(a^{3}-b^{3}\right)(a-b)(a+b+c)}{\left(b^{2}+b c+c^{2}\right)\left(c^{2}+c a+a^{2}\right)}$

Similarly, can be proved the concordance of other triples.
Hence,
$\frac{a^{3}}{b^{2}+b c+c^{2}}+\frac{b^{3}}{c^{2}+c a+a^{2}}+\frac{c^{3}}{a^{2}+a b+b^{2}} \geq \frac{a^{3}}{a^{2}+a b+b^{2}}+\frac{b^{3}}{b^{3}+b c+c^{2}}+\frac{c^{3}}{c^{2}+c a+a^{2}}$.
Required inequality is following from inequality $\frac{3 x^{3}}{x^{2}+x y+y^{2}} \geq 2 x-y$.
3. $\frac{a^{5}}{b^{2} c^{2}}+\frac{b^{4}}{a^{2} c^{2}}+\frac{c^{4}}{a^{2} b^{2}} \geq a+b+c$.

Solution:
Triples $\left(a^{5}, b^{5}, c^{5}\right) \&\left(\frac{1}{b^{2} c^{2}}, \frac{1}{a^{2} a^{2}}, \frac{1}{a^{2} b^{2}}\right.$ ) are concordant, hence
$a^{5} \cdot \frac{1}{b^{2} c^{2}}+b^{5} \cdot \frac{1}{c^{2} a^{2}}+c^{5} \cdot \frac{1}{a^{2} b^{2}}=\frac{a^{5}}{c^{2} a^{2}}+\frac{b^{5}}{a^{2} b^{2}}+\frac{c^{5}}{b^{2} c^{2}}=\frac{a^{3}}{c^{2}}+\frac{b^{3}}{a^{2}}+\frac{c^{3}}{b^{2}}$.
Triples $\left(a^{3}, b^{3}, c^{3}\right) \&\left(-\frac{1}{a^{2}},-\frac{1}{b^{2}},-\frac{1}{d^{2}}\right.$ ) are concordant, therefore
$a^{3} \cdot\left(-\frac{1}{a^{2}}\right)+b^{3} \cdot\left(-\frac{1}{b^{2}}\right)+c^{3} \cdot\left(-\frac{1}{c^{2}}\right) \geq a^{3} \cdot\left(-\frac{1}{c^{2}}\right)+b^{3} \cdot\left(-\frac{1}{a^{2}}\right)+c^{3} \cdot\left(-\frac{1}{b^{2}}\right)$
$\Leftrightarrow a^{2}+b^{2}+c^{2} \leq \frac{a^{3}}{c^{2}}+\frac{b^{3}}{a^{2}}+\frac{c^{3}}{b^{2}}$.

Thus,

$$
\frac{a^{5}}{b^{2} a^{2}}+\frac{b^{3}}{a^{2} a^{2}}+\frac{a^{5}}{a^{2} b^{2}} \geq a+b+a
$$

From this direetly follows inequality

$$
a^{7}+b^{7}+c^{2} \geq a^{2} b^{2} c^{3}+a^{3} b^{2} c^{2}+a^{2} b^{3} c^{2}, \text { यगज } a, b, c \geq 0
$$

Exercise 40 . Prove following inequalities by finding oonoordant tripleg out a) inequality from example 5 ;
b) inequality from exercise 9 (b);
c) $a^{2} b+b^{2} c+c^{2} a \geq a^{2} b^{2} c^{2} \cdot(a b+b c+c a), \quad a, b, c \geq 0$
d) $\frac{a^{3}}{b a}+\frac{b^{3}}{c a}+\frac{c^{3}}{a b} \geq a+b+c, \quad a, b, 0>0$.

And two more problems. (IMO XXIV):
4. Let $a, b, o$ be lensth of sides. Prove inequality:

$$
\begin{equation*}
a^{2} b \cdot(a-b)+b^{2} c \cdot(b-c)+c^{2} a \cdot(a-a) \geq 0 \tag{36}
\end{equation*}
$$

Notice that if we denote $a+b-c=z, b+c-a=x, c+a-b=z$, then we get an expression for $a, b, o$ through independent positive variables $x, y, z$ :
$a=\frac{y+z}{2}, b=\frac{x+z}{2}, c=\frac{z+y}{2}$. As result of substitution $a, b, c$ into inequality
(36) and complicate algebraic transformations we get:
$x^{3} z+y^{3} z+z^{3} y \geq x^{2} y z+y^{2} x z+z^{2} x y$, with which we have already met
(in exercise 33 and example 7 ).
From other hand, concordant triples give a chance for immediately proof of inequality (36). Remove the brackets and rewrite (36) as

$$
a^{3} b+b^{3} c+c^{3} a \geq a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}
$$

Addition to the both of sides sum $a^{2} b c+b^{2} c+a b c^{2}$ yielde: $a b \cdot\left(a^{2}+b c\right)+b c \cdot\left(b^{2}+a c\right)+a b \cdot\left(c^{2}+a b\right) \geq a b \cdot\left(c^{2}+a b\right)+b c \cdot\left(a^{2}+b c\right)+a c \cdot\left(b^{2}+a c\right)$ Now we re goine to prove that triples ( $\left.a^{2}+b, b^{2}+a c, c^{2}+a b\right)$ i ( $-b c,-a c,-a b$ ) are concowdant.
Actually,
$\left(a^{2}+b c-b^{2}-a c\right) \cdot(a c-b c)=a \cdot(a-b) \cdot(a-b) \cdot(a+b-c)=c \cdot(a-b)^{2} \cdot(a+b-c) \quad$ a 0
$\left(b^{2}+a c-c^{2}-a b\right) \cdot(a b-a c)=a \cdot(b-c)^{2} \cdot(b+a-a)>0$
$\left(a^{2}+b c-c^{2}-a b\right) \cdot(a b-b c)=b \cdot(a-c)^{2} \cdot(a+c-b)=0$.
From concordance of pointed triples follows that:
$-b c \cdot\left(a^{2}+b c\right)-a c \cdot\left(b^{2}+a c\right)-a b \cdot\left(c^{2}+a b\right) \geq-a b \cdot\left(a^{2}+b c\right)-b c \cdot\left(b^{2}+a c\right)-c a \cdot\left(c^{2}+a b\right) \leftrightarrow$
$\Leftrightarrow a b \cdot\left(a^{2}+b c\right)+b c \cdot\left(b^{2}+a c\right)+c a \cdot\left(c^{2}+a b\right) \geq b c \cdot\left(a^{2}+b c\right)+a c \cdot\left(b^{2}+a c\right)+a b \cdot\left(c^{2}+a b\right)$.
5. Let $a, b, c$ sides of arbitrary triangle. Prove inequality

$$
2 \cdot\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \geq \frac{a}{c}+\frac{c}{b}+\frac{b}{a}+3
$$

Solution Rewrite initial inequality :

$$
c \cdot\left(a^{2}+b c\right)+a \cdot\left(b^{2}+a c\right)+b \cdot\left(c^{2}+a b\right) \geq a^{2} b+b^{2} c+c^{2} a+3 a b c
$$

Triples $(a, b, c) \&\left(a^{2}, b^{2}, c^{2}\right)$ are concordant. Therefore,

$$
a^{3}+b^{3}+c^{3} \geq a^{2} b+b^{2} c+c^{2} a \Leftrightarrow a^{3}+b^{3}+c^{3}+3 a b c \geq a^{2} b+b^{2} c+c^{2} a+3 a b c
$$

From other hand, triples $(a, b, c) \&\left(-a^{2}-b c,-b^{2}-a c,-c^{2}-a b\right)$ are concordant it follows that
$a \cdot\left(b^{2}+a c\right)+b \cdot\left(c^{2}+a b\right)+c \cdot\left(a^{2}+b c\right) \geq a \cdot\left(a^{2}+b c\right)+b \cdot\left(b^{2}+a c\right)+c \cdot\left(c^{2}+a b\right)=$ $=a^{3}+b^{3}+c^{3}+3 a b c \Leftrightarrow a \cdot\left(b^{2}+2 c\right)+b \cdot\left(0^{2}+a b\right)+a \cdot\left(a^{2}+b c\right) \geq a^{3}+b^{3}+c^{3}+3 a b c$ $\geq a^{2} b+b^{2} c+r^{2} a+3 a b c$.

Convincing arguments of efficiency of using inequality (35) and desire to generalize it by case of arbitrary $n$, become sufficiently motivated. However, before carrying that out we have to make some preparation to simplify the wording and proof.
Definition. Any function defined onto set $\{1,2, \ldots, n\}$ we shall call ordered bet of $n$ numbers. If every $i \in\{1,2, \ldots, n\}$ correspond to $x_{i}$, then ordered set used to note $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, i.e. on the $i$ th place we have the $x_{i}$ and also each of elements (value of function) is strictly reserved by its place (It's a value of argument in the order which is defined by consequent natural numbers).
From definition follows $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \Leftrightarrow x_{i}=y_{i}, i=1,2, \ldots, n$. Number $x_{i}$ is to be said $i-t h$ component ( $i-t h$ coordinate of set $x$ ).
Definition. We shall call by permutation the ordered set of $n$ numbers taken one by one from the set $\{1,2, \ldots, n\}$.
For the notion of permutation we shall use Greek letters $\alpha, \beta, \gamma, \delta, \ldots$ Then sentence: " $\alpha$ is a permutation of $\{1,2, \ldots, n\}$ " means that on the $i$-th place of permutation placed number $\alpha(i) \in\{1,2, \ldots, n\}$, with $\alpha(i) \neq \alpha(j)$ if $i \neq j$. Clearly that $\{\propto(1), \infty(2), \ldots, \infty(n)\}=\{1,2, \ldots, n\}$, but $(\infty(1), \alpha(2), \ldots, \infty(n))=$ $(1,2, \ldots, n)$ only if $\alpha(i)=i, j=1,2, \ldots, n$, because two ordered sets of $n$ numbers are equal if and only if elements of sets placed on the same place are equal. And ordered set $(1,2, \ldots, n)$ we shall denote by $\varepsilon$, $\varepsilon(i)=i, \quad i=1,2, \ldots, n$.
Example: $\alpha=(5,3,2,4,1)$ - permutation of set $\{1,2, \ldots, 5\}$ (or we re saying permutation of numbers $1,2,3,4,5.) \propto(1)=5, \propto(2)=3, \propto(3)=2, \alpha(4)=4, \alpha(5)=1$.
Onto set of permutation we can define the multiplication operation.
Definition For any two permutation $\propto \& \beta$ onto set $\{1,2, \ldots, n$ we define the permutation $\alpha \beta_{\beta}$ by following condition $\alpha \beta \beta(i)=\alpha(\beta(i)), i=1,2, \ldots, n$ i.e. On the i-th place of permutation placed the number which in permutation a placed on the $\beta(i)$-th place.

For example.

$$
\begin{aligned}
& \alpha(3,1,2) \text { и } \beta=(1,3,2) . \alpha \circ \beta(1)=\alpha(\beta(1))=\alpha(1)=3 ; \alpha \beta(2)=\alpha(\beta(2))=\alpha(3)=2 \\
& \alpha \beta(3)=\alpha(\beta(3))=\alpha(2)=1, \text { i.e. } \alpha \beta=(3,2,1) .
\end{aligned}
$$

From the other hand, $\beta \circ \alpha(1)=\beta(3)=2 ; \beta \circ \alpha(2)=\beta(1)=1 ; \beta \circ \infty(3)=\beta(2)=3$, T.e. $\beta=\alpha=(2,1,3)$.
Bo. $\alpha \times \beta \neq \beta=\alpha$.
Actually $\quad \alpha \circ \beta(i)=\beta \cdot \alpha(i)$ if in the permutation $\alpha$ on the $\beta(i)$-th place stays the same number that stays on the $\alpha(i)$-th place in permutation $\beta$. That in general is not true. However, if in the example we take $\beta=(2,3,1)$, then $\alpha \circ \beta(1)=\alpha(\beta(1))=\alpha(2)=1 ; \alpha \beta \beta(2)=\alpha(3)=2 ;$ i.e. if $\alpha=(3,1,2) \& \beta=(2,3,1)$, then $\alpha \circ \beta=\varepsilon=(1,2,3)$, and in this case $\beta \circ \alpha=\varepsilon$.

Let $\alpha, \beta, \gamma$ be a three arbitrary permutation, then $\alpha \circ(\beta \circ \gamma)=(\alpha \circ \beta) \circ \gamma=i . e$. the product of permutation is associative:
$\alpha \circ(\beta \circ \gamma)(i)=\alpha(\beta \circ \gamma(i))=\alpha(\beta(\gamma(i))) \&(\alpha \circ \beta) \circ \gamma(i)=(\alpha \circ \beta)(\gamma(i))=\alpha(\beta(\gamma(i)))$.
And clearly that $\alpha, \varepsilon=\varepsilon \circ \alpha$.
Let $\alpha$ be an arbitrary permutation, then there exist a permutation $\beta$ such that $\alpha \circ \beta=\beta \circ \alpha=\varepsilon$. Actually, since $\{\alpha(1), \infty(2), \ldots, \alpha(n)\}=(1,2, \ldots, n\}$, for every $j \in\{1,2, \ldots, n\}$ we can point i such that on the i-th place of permutation $\propto$ placed $j$, i.e. $\propto(j)=j$ and such is unique for every $j$, since if $\alpha\left(i_{i}\right)=j$, then $\alpha(i)=\alpha\left(i_{i}\right)$, that's possible only if $j=i_{1}$. Assume $\beta(j)=i$, then $\alpha \times \beta(j)=\alpha(i)=j$ for every $j$. Let $i \in\{i, 2, \ldots, n\}$ be chosen by arbitrary way then for $j=\alpha(i)$ by definition of $\beta$ we have $\beta(j)=i$. Hence $\beta \circ \alpha(i)=i$. Therefore $\alpha \circ \beta=\beta \circ \alpha=\varepsilon$.
Permutation $\beta$ is defined unique by condition $\alpha \circ \beta=\beta \circ \alpha=\varepsilon$, if $\beta$ satisfies condition $\beta_{1} \propto \alpha=\alpha \beta_{1}=\varepsilon$, then

$$
\beta_{1}=\beta_{1} \circ \varepsilon=\beta_{1} \circ(\alpha \circ \beta)=\left(\beta_{1} \circ \alpha\right) \circ \beta=\varepsilon \circ \beta=\beta .
$$

Therefore such permutation has special notion $\alpha^{-1}$ and call inverse permutation to the permutation $\alpha$.
Existence of inverse permutations $\alpha^{-1}$ for any permutation $\alpha$ makes it possible to solve equation in permutations. Let given two permutation $\alpha \& \beta$ then equation $\alpha \circ \gamma=\beta$ relatively $\gamma$ can be solved by following way:

$$
\alpha^{-1} \circ \beta=\alpha^{-1} \cdot\left(\alpha^{-1} \circ \gamma\right)=\left(\alpha^{-1} \circ \alpha\right) \circ \gamma=\varepsilon \circ \gamma=\gamma .
$$

So, $\gamma=\alpha^{-1} \circ \beta$.
Similarly, equation $\gamma \circ \alpha=\beta$ has solution $\gamma=\beta$ oo ${ }^{-1}$.
Now is time for examples. From example shown before we can see that for $\alpha=(3,1,2) \quad \alpha^{-1}=(2,1,3)$.

We re going to show how to build inverse permutations.
Let. $\alpha=(4,1,3,5,2) . \alpha(1)=4 \Rightarrow 1=\alpha^{-1}(4)$;
$\alpha(2)=1 \Rightarrow 2=\alpha^{-1}(1) ; \alpha(3)=3 \Rightarrow \alpha^{-1}=3 ; \alpha(4)=5 \Rightarrow \alpha^{-1}(5)=4 ; \alpha(5)=2 \Rightarrow \alpha^{-1}(5)=4$.
Hence, $\alpha^{-1}=(2,5,3,1,4)$.
Let $\beta=(3,2,5,1,4)$. Solve equation $\alpha \sigma \gamma=\beta$, then $\gamma=\alpha^{-1} \circ \beta$. $\gamma(1)=\alpha^{-1}(\beta(1))=\alpha^{-1}(3)=3 ; \gamma(2)=\alpha^{-1}(\beta(2))=\alpha^{-1}(2)=5 ; \gamma(3)=\alpha^{-1}(\beta(3))=\alpha^{-1}(5)=4$; $\gamma(5)=\alpha^{-1}(\beta(5))=\alpha^{-1}(4)=1$. Hence, $\gamma=(3,5,4,2,1)$.

Definition. In what follows we shall say that two ordered sets ( $a_{1}, a_{2}, \ldots, a_{n}$ ) \& $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ are concordant in order (or simply concordant), if all of ordered pairs $\left(a_{i}, a_{j}\right) \&\left(b_{i}, b_{j}\right)$, where $1 \leq i<j \leq n$ are concordant in order. Example Sets $(7.5,3.4,-1,2.3) \&(5.1,2.5,0,1.4)$ are concordant.
Let us have ordered set $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, then for every permutation $a$ the set $x$ correspond to ordered set

$$
x_{o x}=\left(x_{o(\alpha 1)}, x_{o(\alpha 2)}, \ldots, x_{o(n)}\right)
$$

which we call permutation of set $x$ corresponded to the permutation $\alpha$. Remind you that for two ordered sets $x \& y \quad S(x, y)=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}$ clearly, for any permutation $\propto S\left(x_{\infty}, y_{\infty}\right)=S(x, y)$.
Theorem 5. Let $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \& \mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ be two ordered sets such that $x_{1} \leq x_{2} \leq \ldots \leq x_{n} \& y_{1} \leq y_{2} \leq \ldots \leq y_{n}$. Then for any permutation $a$ onto set $\{1,2, \ldots, n\}: \quad S\left(x, y_{\infty}\right) \leq S(x, y), \quad$ i.e.

$$
\begin{equation*}
x_{1} y_{o(1)}+x_{2} y_{o(2)}+\ldots+x_{n} y_{\text {oun })} \leq x_{1} y_{1}+x_{2} y_{2}+\ldots+y_{n} y_{n} \tag{37}
\end{equation*}
$$

## Proof: (induction by $n$ )

i. Base $n=2$. It's equivalent to the definition of concordant pairs. 2. Induction. Let $n>2$. Suppose that the theorem is true for $n-1$ Let $x$ be an arbitrary permutation onto set. $\{1,2, \ldots, n\}$. Here is possible two cases:

1. $\alpha(n)=n \Rightarrow x_{1} y_{o(1)}+x_{2} y_{(\alpha(2)}+\ldots+x_{n} y_{o(n)}=x_{1} y_{\alpha(1)}+\cdots+x_{n-1} y_{(\alpha(n-1)}+x_{n} y_{n}$

Then $\propto$ define a permutation onto set $\{1, \ldots, n\}$ by supposition of induction $x_{1} y_{o(1)}+x_{2} y_{(x(2)}+\ldots+x_{n} y_{(x)-1)} \leq x_{1} y_{1}+x_{2} y_{2}+\ldots+y_{n} y_{n-1} \Rightarrow S\left(x, y_{\infty}\right)=S(x, y)$.
2. $\alpha(n) \neq n$. Since there is a unique $j \in\{1,2, \ldots, n\}$ such that $\alpha(j)=n$, i.e. $j=\alpha^{-1}(n)$, then $S\left(x, y_{o}\right)=x_{n} y_{o u n)}+x_{j} y_{n}+\bar{S}$, where $\bar{S}$ is remain terms in sum $S\left(x, y_{\infty}\right)$. Pairs $\left(x_{n}, y_{i}\right) \&\left(x_{n}, y_{\infty(n)}\right)$ are concordant since $n>j \& n>\infty(n)$, and therefore $x_{n} y_{\text {oun }}+x_{j} y_{n} \leq x_{n} y_{n}+x_{j} y_{\text {oun }}$.
It follows that
$S\left(x, y_{\infty}\right) \leq x_{n} y_{n}+x_{j} y_{\text {oun }}+\bar{S}=S\left(x, y_{\beta}\right)$, where $\beta$ is a permutation of $\{1,2, \ldots, n\}$ defined by following way $\beta(n)=n, \beta(j)=\alpha(n), \beta(i)=\alpha(i)$ for any $i \neq n \& i \neq j$.

Now use case 1 considered before to the permatation $\beta$ and sum $S\left(x, y_{\beta}\right)$.
The theorem is proved.
Corollary 1 . When holds condition of theorem the following inequality is true

$$
x_{1} y_{n}+x_{2} y_{r-1}+\cdots+x_{n} y_{i} \leq x_{1} y_{o \alpha(i)}+x_{2} y_{o \alpha(2)}+\ldots+x_{n} y_{i(n)}
$$

where $\alpha$ is an arbitrary permutation onto set $\{1,2, \ldots, n\}$.

Proof. Sets $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \&\left(-\mathrm{y}_{1},-\mathrm{y}_{2}, \ldots,-\mathrm{y}_{\mathrm{n}}\right)$ are concordant and satisfy the theorem condition and therefore
$x_{1}\left(-y_{o(1)}\right)+x_{z}\left(-y_{o(z)}\right)+\ldots+x_{n}\left(-y_{o(n)}\right) \leq x_{1}\left(-y_{n}\right)+x_{z}\left(-y_{z}\right)+\ldots+x_{n}\left(-y_{n}\right) \Leftrightarrow$
$\Leftrightarrow x_{1} y_{o \mathbf{\alpha}(1)}+x_{2} y_{o(z)}+\ldots+x_{n} y_{o c(n)} \geq x_{1} y_{n}+x_{2} y_{n-1}+\ldots+x_{n} y_{1}$.
Corollary 2 . Let sets $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \& y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be concordant, then for any permutation $x$ onto set \{1,...,n\} holds inequality

$$
x_{1} y_{o(1)}+x_{z} y_{o(2)}+\cdots+x_{n} y_{o(n)} \leq x_{1} y_{1}+\ldots+x_{n} y_{n}
$$

Proof. Let $\beta$ be a permutation of numbers ;1,2,...nt such that $x_{\beta(1)} \leq x_{\beta, 2} \leq \ldots x_{\beta m}$. Then by conoordance property $y_{\beta(1)} \leq y_{\beta(2)}-\ldots \leq y_{\beta(\mathrm{m})}$ i.e. $\beta$ is concordant permutation. The sets $y_{\beta} \& y_{\beta}$ satisfy theorem conditions.

Let $\alpha$ be an arbitrary permutation onto set $\{1,2, \ldots, n\}$. Define permutation $\gamma$ from correlation $\alpha \beta \beta=\beta \%$, then $\gamma=\beta^{-1}$ ooo Denote $x_{\beta} \& y_{\beta}$ by $x \& y$ respectively, i.e. $x_{i}=x_{\beta i,} \& y_{i}=y_{\beta i,}, i=1, \ldots, n$. Then by theorem $5 \quad S\left(x, y_{y}\right) \leq S(x, y)$.
But $S(x, y)=S\left(x_{\beta}, y_{\beta}\right)=S(x, y) \& S\left(x, y_{\gamma}\right)=S\left(x_{\beta}, y_{\beta \circ \gamma}\right)$,
since $y_{\gamma(i)}-y_{\beta(\beta, 1),}, i=1,2, \ldots, n$. As long as $\beta \circ \gamma=\alpha_{0} \beta$, then
$B\left(x, y_{\gamma}\right)=S\left(x_{\beta}, y_{\infty, \beta}\right)=S\left(x, y_{\infty}\right)$. Thus $S\left(x, y_{\infty}\right) \leq B(x, y)$.
Definition. Any two ordered sets $\quad x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \& y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$
are to be said co-concordant if sets $x \&-y$ are concordant.
Corollary 3 . For co-concordant sets $x \& y$ and arbitrary permutation $\alpha$ onto set $\{1,2, \ldots, n\}$ holds inequality:

$$
s(x, y) \leq s\left(x, y_{\infty}\right)
$$

## Froof:

$-B\left(x, y_{x}\right)=S\left(x,-y_{\infty}\right) \leq G(x,-y) \Leftrightarrow S\left(x, y_{\infty}\right) \geq S(x, y)$.
Sets $x \& y$ are co-concordant if and only if for any $1 \leq i<j \leq n$ $\left(x_{i}-x_{j}\right) \cdot\left(y_{i}-y_{j}\right) \leq 0$. Really, $x \& y$ are co-concordant $\Leftrightarrow x \&-y$ are concordant $\Leftrightarrow\left(x_{i}-x_{j}\right) \cdot\left(-y_{i}-\left(-y_{j}\right)\right) \geq 0 \Leftrightarrow$ for any $\quad 1 \leq i<j \leq n$
$\left(x_{2}-x_{j}\right) \cdot\left(y_{2}-y_{j}\right) \leq 0$.
Example. Sets ( $a, b, c$ ) \& (bc, ca, ab) are co-concordant:
$(a-b) \cdot(b c-c a)=-c(a-b)^{2} \leq 0 ;(b-c) \cdot(c a-a b)=-a(b-c)^{2} \leq 0 ;(a-c) \cdot(b c-a b)=-b(a-c)^{2} \geq 0$

For positive $x_{1}, x_{2}, \ldots, x_{n}$ sets $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \&\left(\frac{1}{x_{1}}, \frac{1}{x_{2}}, \ldots, \frac{1}{x_{n}}\right)$ are co-concordant. Acturily, $\left(x_{i}-x_{j}\right) \cdot\left(\frac{1}{x_{i}}-\frac{1}{x_{j}}\right)=-\frac{\left(x_{i}-x_{j}\right)^{2}}{x_{i} x_{j}} \leq 0$.

Corollary 4. Let $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \& \mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ are concordant sets then holds Tchebysheft inequality (see inequalities (34) \& (35)).

$$
n \cdot\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right) \geq\left(x_{1}+x_{2}+\ldots+x_{n}\right) \cdot\left(y_{1}+y_{2}+\ldots+y_{n}\right)
$$

and if $x_{1}+x_{2}+\ldots x_{n}>0$, then

$$
\frac{x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}}{x_{1}+x_{2}+\ldots+x_{n}} \geq \frac{y_{1}+y_{2}+\ldots+y_{n}}{n}
$$

Proof:

$$
\begin{aligned}
& B(x, y) \geq x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n-1} y_{n-1}+x_{n} y_{n} \\
& S(x, y) \geq x_{1} y_{2}+x_{2} y_{3}+\ldots+x_{n-1} y_{n}+x_{n} y_{1} \\
& S(x, y) \geq x_{1} y_{3}+x_{2} y_{4}+\ldots+x_{n-1} y_{1}+x_{n} y_{2} \\
& S(x, y) \geq x_{1} y_{n}+x_{2} y_{1}+\ldots+x_{n-1} y_{n-2}+x_{n} y_{n-1}
\end{aligned}
$$

By addition those inequalities we get
$n \cdot S(x, y) \geq x_{1} \cdot\left(y_{1}+y_{2}+\ldots+y_{n}\right)+x_{z} \cdot\left(y_{1}+y_{z}+\ldots+y_{n}\right)+\ldots+x_{n} \cdot\left(y_{1}+y_{2}+\ldots+y_{n}\right)$
$\Leftrightarrow n \cdot\left(x_{1} y_{1}+x_{2} y_{z}+\ldots+x_{n} y_{n}\right) \geq\left(x_{1}+\ldots+x_{n}\right) \cdot\left(y_{1}+\ldots+y_{n}\right)$.
Similarly, we get $n \cdot\left(x_{1} y_{n}+x_{2} y_{n-1}+\ldots+x_{n_{1}} y_{1}\right) \leq\left(x_{1}+\ldots+x_{n}\right) \cdot\left(y_{1}+\ldots+y_{n}\right)$.
Exeroise 41. Denote the cyolio permutation on 1 -st element by $\alpha$.
$\alpha$ defines by following way: $\alpha(1)=2 ; \alpha(2)=3 ; \ldots ; \alpha(n-1)=n ; \alpha(n)=1$, i.e.
$\alpha(i)=\left\{\begin{array}{l}i+1, \text { если } 1 \leq j \leq n-1 \\ 1, \text { если } i=n\end{array}\right.$. And let $\alpha^{k}=\alpha o \infty \circ \ldots \alpha(k$ factors).

## Froof:

1. $\alpha(i)=n \cdot\left\{\frac{i+1}{n}\right\}$, where $\{x\}$ is fractional part of $x$.
2. $\alpha^{k}(i)=n \cdot\left\{\frac{i+k}{n}\right\}$, for any $k$.
3. $a^{n}=\varepsilon$.
4. $\mathrm{x}_{\alpha^{k}(1)}+\mathrm{x}_{\alpha^{k}(z)}+\cdots+\mathrm{x}_{\alpha^{k}(n)}=\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{n}}$
5. Tchebysheff inequality by using cyclic permutations.

By using concordant sets we can give one more proof of Cavohy's inequality (8) Denote $\sqrt[n]{a_{1} a_{2} \cdots a_{n}}$ by $b$. Easy to notice that
$\operatorname{set} s\left(\frac{a_{1}}{b}, \frac{a_{1} a_{2}}{b^{2}}, \ldots, \frac{a_{1} a_{2} \ldots a_{1}}{b^{n}}\right) \&\left(\frac{b}{a_{1}}, \frac{b^{2}}{a_{1} a_{2}} \ldots, \frac{b^{n}}{a_{1} a_{2} \ldots a_{n}}\right)$ are co-concordant Hence,

$$
\begin{aligned}
& \frac{a_{1}}{b} \cdot \frac{b}{a_{1}}+\frac{a_{1} a_{2}}{b^{2}} \cdot \frac{b^{2}}{a_{1} a_{2}}+\ldots+\frac{a_{1} a_{2} \cdots a_{n}}{b^{n}} \cdot \frac{b^{n}}{a_{1} a_{2} \cdots a_{n}} \leq \frac{b}{a_{1}} \cdot \frac{a_{1} a_{2}}{b^{2}}+\frac{b^{2}}{a_{1} a_{2}} \cdot \frac{a_{1} a_{2} a_{3}}{b^{3}} \\
& +\ldots+\frac{b^{n-1}}{a_{1} a_{2} \cdots a_{n-1}} \cdot \frac{a_{1} a_{2} \cdots a_{n}}{b^{n}}+\frac{b^{n}}{a_{1} a_{2} \cdots a_{n}} \cdot \frac{a_{1}}{b} \Leftrightarrow n \leq \frac{a_{2}}{b}+\frac{a_{3}}{b}+\ldots+\frac{a_{n}}{b}+
\end{aligned}
$$

$$
+\frac{a_{1} a_{2} \ldots a_{n}}{a_{1} a_{2} \ldots a_{n}} \cdot \frac{a_{1}}{b}=\frac{a_{1}+a_{2}+\ldots+a_{n}}{b} \Leftrightarrow \frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \geq b=\sqrt[n]{a_{1} a_{2} \ldots a_{n}}
$$

Exercise 42. Prove inequalities
a) $3 \cdot\left(a^{3}+b^{3}+c^{3}\right) \geq(a+b+c) \cdot\left(a^{2}+b^{2}+c^{2}\right)$, $a, b, c \geq 0$
b) $\left(a_{1}+a_{2}+\ldots+a_{n}\right) \cdot\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right)<n \cdot\left(\frac{a_{1}}{a_{n}}+\frac{a_{2}}{a_{n-1}}+\ldots+\frac{a_{n}}{a_{1}}\right)$.

Exercise 43. Let $a, b, c$ be a sides of triangle and $\alpha, \beta, \gamma$ are its angles lying opposite the sides $a, b, c$ respectively. Prove inequalities
a) $\alpha \cdot \cos \alpha+\beta \cdot \cos \beta+\gamma \cdot \cos \gamma \leq \frac{\pi}{2}$
b) $\frac{a \cdot \cos a+b \cdot \cos \beta+c \cdot \cos \gamma}{a+b+b} \leq \frac{1}{2}$
c) $\frac{\pi}{3} \leq \frac{a \cdot \alpha+b \cdot \beta+c \gamma}{a+b+c}$
d) $\frac{\sqrt{3}}{2} \leq \frac{a \cdot \operatorname{tg} \frac{\alpha}{2}+b \cdot \operatorname{tg} \frac{\beta}{2}+c \cdot \operatorname{tg} \cdot \frac{\gamma}{2}}{a+b+c}$
e) let $0<\alpha_{1}<\alpha_{2}<\ldots<\alpha_{n}<\frac{\pi}{2}, \frac{\sin \alpha_{1}+\sin \alpha_{2}+\ldots+\sin \alpha_{n}}{\cos \alpha_{1}+\cos \alpha_{2}+\ldots+\cos \alpha_{n}}<\frac{1}{n}\left(\operatorname{tg} \alpha_{1}+\ldots+\operatorname{tg} \alpha_{n}\right)$
(Hint. In all inequalities of exercises 42,43 use Tohebysheff inequality. In exeroise 43 ( $\alpha, b$ ) prove $\frac{\cos \alpha+\cos \beta}{2} \leq \cos \frac{\alpha+\beta}{2}$ for $0<\alpha, \beta<\frac{\pi}{2}$, and $\cos \frac{\alpha+\beta+\gamma}{3} \geq \frac{\cos a+\cos \beta+\cos \gamma}{3}$ by the scheme of douhling + reverse step). To be continued.

# FOR YOUNG PLPLLS 

## Problems

1. Guessing how was constracting first table insert the insufficient number. Do the same with second table and remove exceed number.
2. What is three-valued number equal to the oube of latest figure of the number and simultaneously equal to the square of number formed by first \& secord figure ?
3. One of the friends said to another that made up an exercise on division in whioh divident. divisor quotient

| 5 | 625 | 4 |
| :---: | :---: | :---: |
| 8 | 8 | 1 |
| 7 | $?$ | 2 |
| 6 | 216 | 3 |

table 1 and remainder finishine on $1,6,5,7$ respectjvely Does it possible ?
4. In triangle $A B C$ taken an arbitrary point.

Prove that $\quad M B+M C<A B+A C .(F i g$ 1)
5. In an exercise on multiplication ( $F i g$. 20 every star mean the simple one-valued number ( $2,3,5$ or 7 ). Restore the numbers.
6. On hypotenuse of right triangle outside constructed a equilateral triangle with the area in twice more than area of right triangle. Find its acute angles.

7. Moshe and Yosj want to buy a bubble. Moshe need
another 15 agorot and Yosi need 1 agorot. When they add the money it wasn t enoueh again. How much does bubble coast?
8. Write into cells in figure 3 all numbers 1 up to 10 so that showed equalities hold true.

9. Solve in integer numbers equation $2 x y=5 \mathrm{x}+3 \mathrm{y}$.
10. Given that some number by division by 1991 and 1992 gives the same remainder 924 . What's the remajnder geve this number by division by 543 ?

(Problems has been callected by alt Arkady).

## "DELTA"S COMPETTION

1. Prove that there are infinite number of pajrs of natural numbers $x, y$ such that
$\frac{x^{2}+p}{y} \& \frac{y^{2}+p}{x}$ are integer, where $p$ is a natural number.
2. Prove that derivative of function
a) $f(x)=\frac{x-1}{x-2} \cdot \frac{x-2}{x-3} \cdot \frac{x-3}{x-4} \cdot \ldots \cdot \frac{x-2 n+1}{x-2 n}$
b) $f(x)=\frac{\left(x-a_{1}\right) \cdot\left(x-a_{3}\right) \cdot \ldots\left(x-a_{2 n+1}\right)}{\left(x-a_{2}\right) \cdot\left(x-a_{4}\right) \cdot \cdots\left(x-a_{2 n}\right)}$ with $a_{1}<a_{2}<\ldots<a_{2 n+1}$
is negative for al points from the domain of definition of $\mathbb{E} x$.
3. Prove that if a, b, d are natural numbers and a b=e $d$, then

$$
a^{1002}+b^{1092}+c^{1092}+d^{1002} \text { is composite number }
$$

4. Bolve system of equation
$\left\{\begin{array}{l}(b+c) \cdot\left(x+\frac{1}{x}\right)=(a+c) \cdot\left(y+\frac{1}{y}\right)=(a+b) \cdot\left(z+\frac{1}{z}\right) \\ x y+y z+x z=1 .\end{array}, a, b, c \geqslant 0\right.$.
5. Given sequence
$\left\{\begin{array}{l}x_{1}=\frac{1}{3} \\ x_{n+1}=x_{n}^{3}\end{array}+x_{n}, n=1,2, \ldots\right.$. Find ereatest integer of $\frac{x_{1}}{x_{1}^{2}+1}+\frac{x_{2}}{x_{2}^{2}+1}+\ldots+\frac{x_{1091}^{2}}{x_{1901}^{2}+1}$
6. Function $f(x)$ defined onto segment $[0,1]$ and satisfy equation $f(x+f(x))=f(x)$, where $x \in[0,1]$. Prove that $f(x)=0$ for all $x \in[0,1]$.
7. Solve system of equation

$$
\left\{\begin{array}{l}
x-y=\sin x \\
y-z=\sin y \\
z-x=\sin z
\end{array}\right.
$$

8. Prove that the sum of squares of distances from arbitrary point lying on the circle to the equilateral triangle insoribed into circle is a constant value. Find it.
9. Prove inequality $\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}} \leq \frac{\sqrt{3\left(a^{2}+b^{2}+c^{2}\right)}}{4 \cdot 5}$, where $m_{a}, m_{b}, m_{c}$ are medians $\& h_{a}, h_{b}$, $h_{c}$ are altitudes dropped to side $a, b, c$ respectively, $S$ is area of triangle.
10. Prove that for ail $n \in \mathbb{N}, n \geq 2$ the greatest value of funotion $F\left(x_{1}, \ldots, x_{n}\right)-\left(x_{1}+\ldots+x_{n}\right) \cdot\left(\frac{1}{x_{1}}+\ldots+\frac{1}{x_{n}}\right)$ onto segment $[a, b]$ is $n^{2}+\left[\frac{n}{4}\right] \cdot \frac{b-a}{a b}$ (Problems have been prepared by Alt Arkady, "Blikh" school, Ramat-aan).

## QuHCK PROBLEMS


#### Abstract

Hers we offer to the reader unordinary problems and their solution could be demonetrated within a minute. And understandable sotution can be writem on o line However, such problem are peyohologicolly difficult problem and theur solution distinct by brevity only if you got an one unexpected idea (b) of solution and frequentiy difficult to find such idea. This searching oan take a loi of time at least not a munute, although some of you maybe can do it whthin a minute. Solution of those problem we show in department Answers. Hint. Solutions." giving to the reader some time to thenk.


1. In triangle two altitudes no less than length of sides to which them were dropped. Find angles of the triangle.
2. Prove that for any natural nol number $3^{2 n+1}-2^{2 n+1}-6^{2 n}$ is composite.
3. For three pojynomial $F, Q, G$ find polynomial $F$ such that $F$ greater than each of given polynomials (i.e. for all $x F(x)$ has value ereater than values of $P, Q,(G)$.


## MONSTER PROBLEMS

Here we offer to the reader a series of problem possessing one peculiarity - they look very strange. Moreover, they shock. From the first vision on those problem you can say that they are something imposeible and connection of uroonnectable things. You could say that authore in purpose makes them so complicate. And youd be right, but not completely because the reader whose be able to overcome this shock reaction con understand that this shock factor is a kind of hint. After that is matier of iechmic and good background of traditional school base. The aim of those problem is to learn how to breakinrt such psychologic barriers, to test your knowledge on level of searching and combinations necessary tools. The solution of the first one you can see in the departmsnt "Answers. Hint. solutions" and we let you thing about another. We demonstrate the solution of the firsi problem io whom gave up and solution of second problem wait for you in the nexi issue.

1. Find all pairs ( $x, y$ ) satify system
$\left\{\begin{array}{l}y \cdot \sin x=\log _{2}\left|\frac{y \cdot \sin x}{1+3 y}\right| \\ \left(6 y^{2}+2 y\right) \cdot\left(4^{\sin ^{2} x}+4^{\cos ^{2} x}\right)=25 \cdot y^{2}+6 y+1 \\ |y| \leq 1 .\end{array}\right.$
2. Find all values of parameter a when equation

has at least one integer solution.


## OL MPMADS

## Ti-TH MTEEMATONAL MATHEMATYGA COMPETNON

Current 31 -th international mathematical olympiad took place in Pekin from 7 -th to 19 -th ot july, 1990 . In the olympiad took part 308 pupils from 54 contries. First time in the olympiad took part teams from Algire, Bachrein, Japen, Maceo and North Korea. The olympiad ocour in two rounds ( 3 problems for each round, for their solution was given 4.5 hours for each round). Solution of every problem was soored by 7 points. Pupils have been rewarded by gold medal if their soore was 34-42 points, by silver medal if their score was $23-33$ points and by bromze medal if their soore was 16-22 points. In following table you can see the top results of ten best team of this year.

| China | UssR | USA | Romania | France Hungary Germany | Bulgary | U. K. | Chekhoslov. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 42 | 42 | 39 | 36 | 42 | 34 | 33 | 38 | 40 | 33 |
| 42 | 40 | 36 | 34 | 36 | 33 | 30 | 29 | 39 | 30 |
| 41 | 40 | 33 | 32 | 34 | 29 | 27 | 23 | 19 | 26 |
| 35 | 27 | 32 | 29 | 28 | 24 | 25 | 23 | 18 | 24 |
| 36 | 25 | 23 | 22 | 15 | 22 | 22 | 23 | 13 | 24 |
| 33 | 19 | 12 | 18 | 13 | 20 | 21 | 16 | 12 | 16 |
| 230 | 193 | 174 | 171 | 168 | 162 | 158 | 152 | 141 | 153 |

Now, look at problems (in breckets you see the country which was offered the problem). Solutions see in next issue.
i. (India) Ghorda $A P$ and $C D$ interseot at point $E$ into eiven oirole. fet M be a point of segment BE. The tansent touched the oirole at point E and whioh Eoins throush points $\mathrm{D} . \mathrm{B} \& \mathrm{M}$ it interseot the lines $\mathrm{AC} \& \mathrm{AC}$ at points F \& G respectively. Let AM/AB $=$ t. Find FG/EF as a function of $t$.
2. (Chekhoshovakya). On cirole aiven the set E of (2n-1) distinot points (nz3). k of them panted in baak colour and the rest of them peinted in white colour. The painting is to be said eood if there are two blach points between whioh the aro contain exactiy pointa trom the set E. Find a smallest value of $k$ for whioh every painting of point from the set E is good.
3. (Fomania) Find all integer $n>1$ such that $\frac{2^{n}+1}{n^{2}}$ is integer. 4. (Turkey). Let $Q^{+}$is set of all rational positive numbers. find an example for funotion $\dot{f}: Q^{+} \longrightarrow Q^{+}$such that

$$
f(x \cdot f(y))=\frac{f(x)}{y} \quad \text { fon all } x, y=Q^{+}
$$

5. (Germanv) Given a natural mumber no $>$. players A a B ohonse one aftar another natural mumbers $n_{1}, n_{2} \cdots$... by following induotive mule. Plaver A knew the number $n_{2 k}$ oan ohooge any number $n_{2 k+1}$ such that

$$
n_{2 k} \leq n_{2 k+1} \leq n_{2 k}^{2}
$$

After that plaver $B$ ohooses any number $n_{2 k+2}$ suoh that $n_{2 k+1} / n_{2 k+2}$ is a natural degree of a orime number. Flaver $A$ win if he ohoose 1990 and piaver $B$ win if he chooses 1.
Find ail values of no for which
a) A has a winning strategy;
b) $B$ has a winnine strategy;
c) neither A, B have a winning strategy.
b. (Holland). Prove that there exist a convex polygon with 1990 sides such that
a) all its amgles are equal;
b) Jengths of polvgon sides are equal to numbers $1^{2}, 2^{2}, \ldots, 1989^{2}, 1990^{2}$ in some order.


Froblems for voung pupils.

1. In the first table you should write to insert $7^{2}=49$, since the rule of writting cells is | $x$ | $x^{k}$ | $k$ |
| :--- | :--- | :--- |

In the second table the exceed number $4 s 5-13$, since other nelis axe thiad by pars of equal numbers: $\frac{1}{3}=0$. (3) $\frac{2}{2}-\frac{23}{3}, \frac{1}{3}=0.185 ; \frac{4}{11}=0 .(36)$.
2. Answer. $729=9^{3}=27^{2}$.
3. No, impossible. Since if a - divident, b-divisor, k -- quotient, $r$ - remainder, then $a=k \cdot b+r$ and last figure of number is a last figure of the result by corresponded operation over lasts figures $k, b$ \& $r, i . e$. the jast figure of nuber is $3 \cdot 5+7=22$.
4. Draw BM up to intersection with the side AC at point $E$. Then: $A E+A B>E B \Rightarrow A E+E C+A B>E B+$ $+E C=E C+(E M+M B)=(E C+E M)+M B>M C+M B$.
5. Answer. $325 \times 777=252525$.
6. Draw from the vertex $B$ of equilateral triangle a altitude BE to side AD. Then the area of triangle AEB is equal to the area of triangle $A B C$, since altitude $B E$ is the median of triangle ADB too. Therefore, the area of triangle AEB is equal to half area of triangle ADB. Hence, altitude EK of right triangle AEB is equal to altitude $C M$ of triangle $A B C$.
Thus, triangles AEB and BCA are equal.
Actually, into half-circle with diameter $A B$ we can construct
exactly two equal rieht triangles of given altitude.
It's possible a algebraic way to prove the equality of right triangles by hypothenuse and altitude). From the equality of
triangles we deduce that in $A B C$ acute angles $30^{\circ} \& 50^{\circ}$.
7. Denote by $x$ the price of bubble. Then Moshe has $0 \leq x-15$ agorot and Yosi has $0 \leq x-1$ agorot. By problem's condition: $x-15+x-1<x \Leftrightarrow x<16$. But $x \geq 15$. Thus, $x=15$ agorot. Hence, Yosi had 14 agorot, and Moshe had no money at all.
8. Arswer. 8$]: 4]+3]=[5]$


Wuiok problems.

1. $\left\{\begin{array}{l}h_{a} \geq a \\ h_{b} \geq b\end{array} \Rightarrow h_{a} \geq a \geq h_{b} \geq b \geq h_{a} \Rightarrow\right.$
$\Rightarrow h_{a}=a=h=h_{b}$. Triangle is issosceles and ripht. Angles $90^{\circ}, 45^{\circ}, 45^{\circ}$.
2. $3^{2 n+1}-2^{2 n+1}-6^{n}=\left(3^{n+1}+2^{n+1}\right) \cdot\left(3^{n}-2^{n}\right)$.
$3 . F=F^{2}+Q^{2}+Q^{2}+\frac{1}{4}$

Monster problems.

1. Solve the second equation of the system ag quadratio relatively $t=4^{2}:$ Notioe that $y=0$ (othenwise $10 e_{z}\left|\frac{y \sin }{1+3 y}\right|$ is undetemmined, we get for the second equation in taken notion:
$\left(6 y^{2}+2 y\right) \cdot t^{2}-\left(25 y^{2}+6 y+1\right) \cdot t+4 \cdot\left(6 y^{2}+2 y\right)=0 \Leftrightarrow t^{2}-\left(\frac{3 y+1}{2 y}+\frac{8 y}{3 y+1}\right) \cdot t+4=0$
By Wiette s theorem:
$\left[\begin{array}{c}t=\frac{3 y+1}{2 y} \\ \frac{8 y}{y+1}\end{array}\right.$. Hence $z$-nd equation becomes $\left[\begin{array}{c}4^{2 n^{2} x}=\frac{3 y+1}{2 y} \\ 4^{2} \%=\frac{8 y}{y+i}\end{array}\right.$
Whbider the first ase $4=\frac{2 y}{2 y}$. Since given that $|y| \leq 1$ and $0 \leq \sin ^{2} x \leq 1$, then $y$ has to satisfy syetem of inequalities.
$\left\{\begin{array}{l}y=0 \\ |y| \leq 1 \\ 1 \leq \frac{3 y+1}{2 y} \leq 4\end{array} \quad\right.$. By straightforvard loganithm $4^{2 m^{2} x}=\frac{3 y+1}{2 y}$ by the base z, vielus $2 \cdot \sin ^{2} x+1=-30 g_{2} \frac{y}{3 y+1}$. By usine this we can rewrite equality

$$
\text { е е еमдE: } 2 \cdot \sin ^{2} x+y \cdot \sin x+1=10 e_{2}|\sin x| \text {. }
$$

But $2 \cdot \sin ^{2} x+y \cdot \sin x+1=2 \cdot \sin ^{2} x+2 \cdot \sin x \cdot \frac{y}{4}+\frac{y^{2}}{16}+1-\frac{y^{2}}{8}=$
$-2 \cdot\left(\sin x+\frac{y}{4}\right)^{2}+\frac{8-y^{2}}{8} \because$ o for any $|y| \leq 1$. It follows that

$$
\log _{2}|\sin x|>0 \leftrightarrow|\sin x|>1, \text { that } x \text { impossible. }
$$

Thus, given system equivalents
$\left\{\begin{array}{l}y \cdot \sin x=\log _{2}\left|\frac{y \cdot \sin x}{1+3 y}\right| \\ A^{2} \operatorname{in}^{2} x=\frac{8 y}{3 y+1} \\ |y| \leq 1\end{array} \Leftrightarrow\left\{\begin{array}{l}y \cdot \sin x=\log _{2}|\sin x|+10 g_{2} \frac{y}{1+3 y} \\ 2 \cdot \sin ^{2} x=10 g_{2} \frac{y}{3 y+1}+3 \\ 1 \leq \frac{8 y}{5 y+1} \leq 4 \\ |y| \leq 1\end{array} \Leftrightarrow\right.\right.$
$\Rightarrow\left\{\begin{array}{l}-2 \sin ^{2} x+y \cdot \sin y-3=\log _{2}|\sin x| \\ |y| \leq 1\end{array} \quad \Rightarrow\left\{\begin{array}{c}-2 \sin ^{2} x+y \cdot \sin x+3 \leq 0 \\ |y| \leq 1\end{array}\right.\right.$
$\Leftrightarrow\left\{\begin{array}{l}2 \cdot \sin ^{2} x-y \cdot \sin x-3 \geq 0 \\ |y| \leq 1\end{array} \quad\right.$. But. $\quad \max _{|y| \leq 1}\left(2 \cdot \sin ^{2} x-y \cdot \sin x-9\right)=$
$=\max \left\{2 \cdot \sin ^{2} x-\sin x-3,2 \cdot \sin ^{2} x+\sin x-3\right\} \leq 0, i . \operatorname{fon} \sin x, y \sin$
$=\max \left\{2 \cdot \sin ^{2} x-\sin x-3,2 \cdot \sin x+\sin x-3\right\} \leq 0, j . e$ for any $x, y$ such that $|y| \leq 1 \quad 2 \cdot \sin ^{2} x-y \cdot \sin x-3 \leq 0$ and the equality can be reached only if
$\left\{\begin{array}{l}y=1 \\ \sin x=-1\end{array} \quad\right.$ or $\quad\left\{\begin{array}{l}y=-1 \\ \sin x=1\end{array}\right.$
Thus, as equivalent from the given system
$\left[\begin{array}{l}y=1 \\ \sin x=-1 \\ y=-1 \\ \sin x=1\end{array}\right.$ to the system. since $4^{\sin ^{2} x}=4$ when $\sin x=-1$ and $\frac{8 y}{3 y+2}$ when $y=1$. So, we have that paix $\left\{\begin{array}{l}y=-1 \\ \sin x=1\end{array}\right.$ satisfies the given system. Answer: $y=-1, \quad x=\frac{\pi}{2}+2 \pi k, \quad k \in \mathbb{Z}$.


## RELAXATION CORNER

Militaty secrete:

- In military situation the value of sine onn reach " 4 "
- The military secret is not what you re learning, the seqret is that you are leamine this.


## On exang:

- Do vou hope that your srade on exam will be " 60 " ? Yes, you get it, but it doesn t help you to Erow easy.
- What do you, mr. student, draw such unequal square ? Are you daltonic ? Dbservation:
- The face on the foto must be quadratia
on lectare:
-- You always have to remember that anything you do you do inoorreot.
-- Students ! Pi is the irrational number, otherwise it is equal to 3.14.
This integral so simple that can be taken without "dx".
- The easence of gravitation power I prove within a courle of minutea.

Advice:

- You need to clean a cax by hot water since increasing the stioknese of atome.


## On the Iecture on civil defence:

- During nuclear attack is necessary to entrench oneself. Ghown by statistio data that a corpses of unentrenched soldiens have huge nanker of burns. Just as a corpses of entrenched entiere have mo barne.
- The zone of hitting is consist of zones A, B, D. The epicentre situates at the zone $A$. And besides very interestins that the bomb is falling juet at the epicentre.


## Definitions:

- What $s$ a Lattice ? The lattice is a metal eheet with broken into it holee.
- Ellife is a circle inscribed into square 3x4
… Bush is a totality of branches and leaves sticking out from an one place.


[^0]:    The artzcle has been prepared by Alt Arkady. "Blikh" school, Ramat-Gan".

